

ORBIT DETERMINATION FOR A MICROSATELLITE

 RENDEZVOUS WITH A NON-COOPERATIVE TARGET

THESIS

Brian L. Foster, Captain, USAF

AFIT/GAI/ENY/03-2

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government.

AFIT/GAI/ENY/03-2

ORBIT DETERMINATION FOR A MICROSATELLITE

RENDEZVOUS WITH A NON-COOPERATIVE TARGET

THESIS

Presented to the Faculty

Department of Aeronautics and Astronautics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Aerospace and Information Operations

Brian L. Foster, B.S. AsE.

Captain, USAF

March 2003

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GAI/ENY/03-2

ORBIT DETERMINATION FOR A MICROSATELLITE

RENDEZVOUS WITH A NON-COOPERATIVE TARGET

Brian L. Foster, B.S.AsE.

Captain, USAF

Approved:

 ______________/signed/_________________________ __________________
 Dr. Steven G. Tragesser Date
 Thesis Advisor

 _____________/signed/___________________________ __________________
 Dr. William E. Wiesel, Jr. Date
 Committee Member

 _____________/signed/_________________________ __________________
 Major Richard G. Cobb Date
 Committee Member

 iv

Table of Contents

 Page

List of Tables ………………………………………………………………………. vi

Abstract …………………………………………………………………………….. vii

I. Introduction ……………………………………………………………….... 1

1.1 Background Information……………………………………………. 1

1.2 Problem Description/Objectives……………………………………. 4

II. Tracking Systems Architecture Background Information…………………… 8

 2.1 Radar ………………………………………………………………… 9

2.2 Global Positioning System (GPS) ………………………………….. 11

2.3 Satellite Laser Ranging (SLR) ……………………………………… 13

2.4 Optical Tracking ……………………………………………………. 16

2.5 Selection of Tracking System Architecture ………………………… 18

 2.5.1 Ground Tracking Systems ……………………………………. 18

 2.5.2 Microsatellite On-board Tracking Sensor ……………………. 19

III. Methodology ………………………………………………………………... 21

3.1 Simulation Data Generation ………………………………………… 22

3.2 Initial Orbit Determination ………………………………………….. 27

 3.2.1 Gibbs Method for Initial Orbit Determination ………………... 28

 3.2.2 Herrick-Gibbs for Initial Orbit Determination ………………… 30

3.3 Non-linear Least Squares Orbit Determination Filter ……………….. 31

 v

 Page

3.4 Perturbations ……………………………………………………….. 38

3.4.1 J2 ……………………………………………………………… 38

 3.4.2 Third-Body Gravitational Effects……………………………... 39

3.4.2.1 Sun Position Vector ……………………………………. 39

3.4.2.2 Moon Position Vector ………………………………….. 41

 3.4.3 Atmospheric Drag ……………………………………………. 42

3.5 Equations of Variation ……………………………………………… 43

3.5.1 Equations of Variation for the Two-Body Problem ..………… 43

3.5.2 Equations of Variation for J2 …………………………………. 44

3.5.3 Equations of Variation for Third-Body Gravitational Effects … 45

3.5.4 Equations of Variation for Atmospheric Drag ………………… 46

IV. Results and Analysis ………………………………………………………… 49

4.1 Gibbs and Herrick-Gibbs Initial Orbit Determination Methods ……. 49

4.2 Non-linear Least Squares Orbit Determination Filter ………………. 54

V. Conclusions and Recommendations ………………………………………… 57

Appendix A. Non-Linear Least Squares Orbit Determination Filter MATLAB Code 59

Appendix B. Subroutine On-Orbit RHS MATLAB Code …………………………. 83

Appendix C. Subroutine OBSER MATLAB Code …………………………………. 105

Appendix D. Gibbs Initial Orbit Determination Method MATLAB Code …………. 110

Appendix E. Herrick-Gibbs Initial Orbit Determination Method MATLAB Code … 113

Bibliography ………………………………………………………………………… 116

Vita ………………………………………………………………………………….. 118

 vi

List of Tables

Table Page

 1. Examples of Space Rendezvous Radar Parameters …………………………. 20

 2. Types of Tracking Data for Initial Orbit Determination and Orbit Updating .. 21

 3. Position Vectors from the Don-2M Radar Separated by 1o ………………….. 50

 4. State Vectors Separated by 1o from Don-2M Radar Data ……………………. 50

 5. Position Vectors from the Eglin Spacetrack Radar Separated by 1o …………. 51

 6. State Vectors Separated by 1o from Eglin Spacetrack Radar Data …………… 51

 7. Difference Between Truth and Radar State Vectors for 1o Separation ………. 51

 8. Position Vectors from the Don-2M Radar Separated by 5o ………………….. 52

 9. State Vectors Separated by 5o from Don-2M Radar Data ……………………. 52

 10. Position Vectors from the Eglin Spacetrack Radar Separated by 5o …………. 52

 11. State Vectors Separated by 5o from Eglin Spacetrack Radar Data …………… 53

 12. Difference Between Truth and Radar State Vectors for 5o Separation ………. 53

 13. Comparison of Estimated State Vectors Based on Increasing Number of Data
 Points ………………………………………………………………………….. 54

 14. Comparison of Variances for 10, 20, 30, 40, and 100 Data Points …………….. 55

 15. Comparison of GPS State Vectors with and without Third-Body Perturbation .. 56

 16. Variances for GPS Orbit with and without Third-Body Perturbation ………….. 56

 vii

AFIT/GAI/ENY/03-2

Abstract

This study investigated the minimum requirements to establish a satellite tracking

system architecture for a hostile “parasitic microsatellite” to rendezvous with a larger,

non-cooperative target satellite. Four types of tracking systems and their capabilities

were reviewed with emphasis on “low-technology” level and/or mobile systems which

could be used by technologically unsophisticated state or non-state adversaries. With the

tracking system architecture selected, simulated tracking data was processed with a non-

linear least squares orbit determination filter to determine and/or update the target

satellite’s state vector.

 1

ORBIT DETERMINATION FOR A MICROSATELLITE

RENDEZVOUS WITH A NON-COOPERATIVE TARGET

I. Introduction

1.1 Background Information

 Since the end of the 1991 Persian Gulf War, which has been called the ‘first space

war,’ the United States has become increasingly dependent on products and services

derived from space borne assets, both economically and militarily. In view of this

increased dependency, the 2000 Commission to Assess United States National Security

Space Management and Organization recognized in their January 11, 2001 report “The

political, economic, and military value of space systems makes them attractive targets for

state and non-state actors hostile to the United States and its interests.” (Space

Commission, 12) China is one such potentially hostile state actor. According to a report

in the Hong Kong Sing Tao newspaper dated January 5, 2001, “The Small Satellite

Institute under the Research Institute of Space Technology has developed an advanced

anti-satellite weapon called ‘parasitic satellite’.” (Tung) The article further reports

 “the ‘parasitic satellite’ is a microsatellite which can be launched to stick to an
 enemy satellite; and in time of war, it will jam or destroy the enemy satellite
 according to the command it receives. As a new-concept anti-satellite weapon,
 ‘parasitic satellite’ can control or attack many types of satellite, including low-
 orbit, medium-orbit and high-orbit satellites, both military and civilian satellites,
 single satellite, and constellated satellites. An enemy satellite, once locked on by
 ‘parasitic satellite,’ cannot escape being paralyzed or destroyed instantaneously in
 time of war, no matter how sophisticated it is, and no matter whether it is a
 communications satellite, radar electronics jamming satellite, or even a space
 station or space-based laser gun.” (Tung)

 2

In the concluding paragraph, the article states “Its [Beijing’s] long-term strategic

objective is to establish a strategic balance among big powers, break the space monopoly

by the superpower’s huge astronautical system, and weaken the superpower’s

information warfare capability.” (Tung)

 While the parasitic satellite report may itself be an example of information

warfare whereby an adversary attempts to misinform or deceive potential adversaries, a

more substantive report appearing on the SPACE.com website on October 19, 2000

details Tsinghua-1, China’s first microsatellite. According to the report, Tsinghua-1 was

a joint project of Tsinghua University in Beijing and Surrey Satellite Technology Ltd.

(SSTL) of Guildford, United Kingdom. Tsinghua-1 was one of three small satellites

launched by a Kosmos 3M booster on June 28, 2000. A key paragraph of this article

states

 “While the intent of the microsat project is purely scientific in nature, its
 capabilities have not been lost on military experts…And the satellite also
 has demonstrated the ability to maneuver and station-keep with neighbor-
 ing spacecraft…” (Seitzen)

This ability of small satellites to carry out automated space rendezvous and

observation of other satellites was demonstrated shortly after launch when the 6.5-kg

British SNAP-1 nano-satellite, also built by SSTL and launched with Tsinghua-1, made

the first-ever space rendezvous of microsats, closing to a range of just 30 feet (9 meters)

(Seitzen). It should be noted that any potentially hostile satellite rendezvous missions

will not be so easily set up for success. In this case, the three small satellites were all

deployed by the same booster into roughly the same orbital conditions and were no more

than a few hundred meters apart when the rendezvous was performed. For the case of a

 3

hostile microsatellite mission, the aggressor will have to first determine which of the

satellites already on orbit, whether for days or years, is to be targeted then launch the

microsatellite to intercept the target. Since by its very nature (i.e. micro-sized), the

microsatellite will not possess an extensive propulsion system or on-board propellant

supply, it is critical the microsatellite be directly launched as closely as possible into the

target satellite’s orbital plane. Out-of-plane, or inclination changing, maneuvers are

extremely costly in terms of propellant for any satellite, regardless of size. In-plane

maneuvers, on the other hand, are relatively inexpensive in terms of propellant.

Another potentially threatening implication for United States’ space systems is the

possibility that “Small, microsat satellites used in future reconnaissance roles could be

quickly built and launched aboard Chinese space boosters in a “pop-up” capability as

needed for military assignments.” (Seitzen) Although, first mentioned in the October 19,

2000 article above, further reference to a launch-on-demand system was publicly made at

a space symposium held in Shanghai on 17-20 April 2001. According to the article

“China Plans Rapid-Response, Mobile Rocket, Nanosatellite Next Year,” which appeared

on the SpaceDaily website on May 1, 2001, Chinese speakers discussed “the need for

300-500 kilogram-class satellites to be put in orbit within hours upon request from a

customer…along with scientific, economic, and national security needs.” To meet this

requirement, the Chinese engineers and scientists envision a mobile, truck-based platform

that would be capable of launching from “anywhere in the country.” The article further

quoted Yin Xingliang, vice president of a Chinese company called CAMEC, regarding

the mobile launch system, “the tracking, telemetry, and command (TT&C) method and

the TT&C system must conform to features of mobile launch.” (Cosyn)

 4

For this thesis, the initial conditions to be tested for rendezvous placed the

microsatellite in the same orbit as the target but trailing the target by 1,000 km. The first

rendezvous maneuver control thrust calculations will be based on orbit positions

determined by ground sensors. When the microsatellite is within range of the target to

track it with its on-board sensor, then the control thrust calculations will be based on orbit

positions based on those observations.

1.2 Problem Description/Objectives

 The fundamental issue to be investigated regarding the Chinese “parasitic

satellite” was the overall feasibility of such a system. To that end, the work related to

this topic was divided among three students in the Air Force Institute of Technology

Department of Aeronautics and Astronautics (AFIT/ENY) 03M class. The areas of

responsibility included selecting a tracking and orbit determination architecture for both

the hostile microsatellite and the larger target satellite; establishing a rendezvous control

algorithm; and modeling the larger target satellite’s dynamics for detection of a covert

microsatellite docking.

 The objective of this thesis was to develop a tracking system architecture concept

and a set of orbit determination routines for three different tracking phases for both the

microsatellite and the target satellite. These phases include: 1) initial orbit determination

such as following the launch of the microsatellite at the beginning of its rendezvous

mission or the activation of a new tracking sensor that has no a priori knowledge of the

target’s state (orbital elements); 2) orbit determination (orbital element update) from

ground sensor data using an initial estimate of the target’s state to start the orbit

 5

determination filter; and finally, 3) determination of the target satellite’s orbit from the

perspective of the microsatellite’s space-borne sensor using an initial estimate of the

target’s state based on the orbit determination from the ground sensor(s) to start the on-

orbit determination filter.

 The initial orbit determination phase utilizes methods developed by Gibbs and

Herrick (Vallado: 414, 420). The Gibbs Method uses three sequential, non-zero, coplanar

position vectors to determine the velocity associated with the second (middle) position

vector. Thus, having the three components for position vector and the three components

for the velocity vector give the six total quantities needed to define the satellite’s state.

Vallado (1998) offers two warnings when implementing the Gibbs Method. First,

although the problem formulation assumes the vectors are coplanar, real world data may

produce position vectors that are slightly out of plane. Therefore, the user must choose

an error tolerance level when checking whether the vectors are coplanar. Vallado

suggests a tolerance of 2o to 3o (Vallado, 410). Second, even if the position vectors are

coplanar, the Gibbs Method will suffer numerical instability if they are too closely spaced

together along the orbital path. Vallado states the Gibbs Method is robust and works with

angles separated by as little as 1o, but degrades quickly with smaller angles (Vallado,

413).

 The Herrick-Gibbs Method (Vallado, 420) is a variation of the basic Gibbs

Method which uses a Taylor-series approximation to obtain the velocity vector associated

with the second of three sequential position vectors. Whereas the Gibbs Method becomes

unstable when the three position vectors are closely spaced in-plane, the Herrick-Gibbs

Method is better suited for such conditions. Regarding the suitability of the Gibbs versus

 6

Herrick-Gibbs methods, Vallado says Herrick-Gibbs is superior below angular

separations of 1o while Gibbs is superior with angular separations over 5o (Vallado, 421).

 The second orbit determination phase is the updating of the target satellite’s

orbital elements using observations from a ground-based sensor and implementing a non-

linear least squares orbit determination filter. The non-linear least squares filter was

modeled after FORTRAN code developed by Dr. William Wiesel for use in his class

MECH 731 Modern Methods of Orbit Determination at the Air Force Institute of

Technology. His original FORTRAN code was set up for orbit determination of a

spacecraft on an interplanetary trajectory to rendezvous with Mars and included

perturbation modeling for the third-body gravitational effects of the sun and the moon.

The FORTRAN code was translated by the author, with Dr. Wiesel’s permission, to

MATLAB ® and updated to include perturbation modeling for atmospheric drag for

orbits below 1,000 km altitude and the gravitational effect of the Earth’s oblateness. The

filter is not self-starting and must use an a priori estimate of the target satellite’s state to

begin calculations. The initial estimate of the target’s state could be the initial orbit as

determined using the Gibbs or Herrick-Gibbs Methods results of the first phase or North

American Aerospace Defense Command (NORAD) two-line element (TLE) sets

obtained through other sources such as amateur satellite tracking bulletin boards on the

Internet such as Celestrak (http://celestrak.com).

 The third orbit determination phase is the updating of the target satellite’s orbit

elements using observations from a space-borne sensor on-board the chase satellite,

which is assumed to be the microsatellite, and involves implementing a non-linear least

 7

squares orbit determination filter. In this case, the initial estimate of the target satellite’s

state is the orbit as determined from ground sensor(s) in phase two.

 The overarching approach used for this thesis was to go as “low-tech” as possible

in the development of the tracking architecture and orbit determination routines.

However, space missions do require a substantial investment in terms of hardware such

as the satellites and tracking systems, engineers and technicians knowledgeable in space-

systems engineering and integration, and perhaps, most importantly, funding. The

rationale behind this “low-tech” approach was to determine if a relatively unsophisticated

potential adversary such as a terrorist group or developing nation or state could

reasonably pose a threat to satellites in orbit.

 8

II. Tracking Systems Architecture Background Information

An open-source literature review was conducted to investigate the types of

ground-based satellite tracking systems available to a potential adversary and the

capabilities of those systems. Emphasis was placed on identifying foreign systems,

whether they were permanently fixed tracking sites or portable systems which might be

more favorable to a terrorist-type organization; however, open source literature was

determined to be extremely lacking. Even the most authoritative open source, Jane’s

Radar and Electronic Warfare Systems, had few entries on space tracking systems of

origin other than Russia or the United States. Where possible, the capabilities of foreign

systems are described, but the discussion defaults to describing US systems in order to

establish a baseline reference for the type of system being reviewed. The inference is that

if the United States, which the author assumes has the most well established combination

of tracking systems, has technical difficulty with certain systems, then an adversary with

less technical capability or resources will have even greater difficulty. The most likely

candidate space tracking systems include radar, Global Positioning System (GPS),

satellite laser ranging (SLR), and optical tracking. Each of these systems is discussed in

the following sections. The literature review also searched for information on

microsatellite space borne tracking systems specifically for rendezvous and docking of

non-cooperating vehicles. Again, open source literature was found to be non-existent.

 9

2.1 Radar

 Radar is the most likely satellite tracking system to be used by an adversary. The

main advantages are its ability to deliver accurate range (distance from the radar to the

satellite) information, its 24-hour availability (day and night), and its ability to penetrate

weather such as clouds and rain. Although orbit determination methods which use

angles-only (observations of azimuth and elevation or right ascension and declination) do

exist, Vallado states that “range information allows us to analyze data faster, more

simply, and more accurately.” (Vallado, 379)

 The primary disadvantage to using radar is that the adversary is typically bound to

the radar site’s geographic location and thus may not be able to track all targets of interest

to the adversary depending on the mission orbits of the desired targets. To counter this

situation, an adversary would need to operate a worldwide tracking system such as the

United States Air Force’s Space Surveillance Network (SSN) and/or have mobile radar

space track systems. Since no other state or non-state entity possesses a worldwide

network, the need for a mobile system becomes obvious if the adversary intends to have

the ability to track any desired target.

 Only three references on mobile space track radars were found during the

literature review. In his background paper for the 2000 Commission to Assess United

States National Security Space Management and Organization, “Threats to United States

Space Capabilities,” author Tom Wilson states

 “The proliferation of air and theater missile defense radars, such as those
 associated with the SA-10, have enabled many countries, such as China
 (who purchase these radars from Russia), to field space-based tracking
 systems capable of accurately locating objects in LEO. These mobile
 radars were originally designed to track reentry vehicles but, due to their

 10

 low-cost and mobility, are attractive as space-based object trackers
 as well.” (Wilson, 7)

Although Wilson appears to say the SA-10 radars are space-based, he means the mobile,

ground-based radars are used to track space-based objects. Regrettably, Wilson does not

provide a reference for his statement regarding the SA-10. According to Missile Systems

of the World, the radar used with the SA-10A “Grumble” is the 10-GHz 36N6 (NATO

Flap Lid) phased-array radar (Missile Systems, 104). There is also a SA-10C/D

“Grumble” variant whose associated fire-control radar is the improved three-dimensional

Tombstone surveillance radar (Missile Systems, 106). A review of Jane’s Radar and

Electronic Warfare Systems 2001-2002 does not show the 36N6 Flap Lid but does list the

30N6 Flap Lid B radar. According to Jane’s, the 30N6’s detection range is only 90 km

(Jane’s, 96). Similarly, for the Tombstone radar (64N6E), the detection range is only

slightly better at 260 km for a target the size of a MiG-21 aircraft (Jane’s, 98). Its listed

accuracies are 30 minutes of arc in azimuth, 35 minutes of arc in elevation, and 200

meters in range.

Only one other reference for a mobile space tracking system was found. The

Chinese HN-C03-M precision instrumentation radar is listed as having a range of 300 km

(for a reflecting target of unspecified size). It operates in the G-band (5.5 – 5.7 GHz)

with a peak power of 1 megawatt (MW). Its tracking accuracies are 0.2 min (0.00333

deg) in both azimuth and elevation and 5 meters in range (Jane’s, 288).

 In contrast to mobile radar tracking systems, an example of a foreign fixed-base

radar is the Russian Don-2N Anti-Ballistic Missile (ABM) and space vehicle tracking

radar. Jane’s lists its capabilities as full-hemispherical coverage (360o in azimuth and 90o

 11

in elevation), detection range of 600 – 1,000 km for a 5-cm space object, and accuracies

of 0.02-0.04o angular position and 200 meters in range (Jane’s, 37).

 If a potential adversary is to threaten all of the mission orbits of US space systems

then it must have the capability to track satellites as far as the geosynchronous belt at a

range of 22,236 miles (35,786 km). Obviously, the mobile systems and the one Russian

fixed-base radar discussed here do not have that capability. An example of a US radar

that is capable of ranging to geosynchronous is the AN/FPS-85 Spacetrack radar at Eglin

AFB, FL. Built in the 1960s, Spacetrack consists of a single receiver and a single

transmitter sitting side-by-side. The receiver face is 192 feet long, 143 feet deep, and 143

feet high. The transmitter face is 126 feet long, 95 feet deep, and 95 feet high

(http://www.globalsecurity/org/space/systems/an-fps-85.htm). Spacetrack reportedly has

the capability to track an object the size of a basketball, approximately 457 cm2, at

geosynchronous range.

2.2 Global Positioning System (GPS)

 Due to the non-cooperative nature of the target satellite, GPS cannot be used for

the determination of its orbit in order to pass on to the rendezvous control algorithm for

the microsatellite. However, GPS can be used for determining the orbit of the

microsatellite. In his paper “Satellite Orbit Determination Using a Single-Channel

Global Positioning System Receiver,” Mark Psiaki describes the use of single-channel

GPS receiver intended as a method of reducing the electrical power required in situations

where the power budget is limited as in the case of a micro- or nano-satellite. Typically,

a GPS user’s position is determined by simultaneously evaluating pseudoranges from a

 12

minimum of four different GPS satellites with each satellite representing a separate

channel. Some receivers may have as many as 12 channels. Obviously, the more

channels a given receiver has, the more electrical power is consumed in processing those

channels. The single-channel GPS receiver Psiaki describes processes data from four or

more GPS satellites, but does so sequentially. This design trades off power with

performance.

 In terms of performance, Psiaki states that typical multi-channel receivers could

determine instantaneous position with an accuracy on the order of 10 meters up to

altitudes of 3,200 km. For his simulated LEO case, the single-channel receiver had peak

steady-state errors of 64-m along track, 128-m across track, and 72-m in altitude (Psiaki,

141). By comparison, a 12-channel receiver for this case, had peak errors of 5-m along

track, 5-m across track, and 13-m in altitude (Psiaki, 142). Other cases were tested such

as a highly elliptical orbit and geosynchronous (GEO). For the GEO case, the peak

position error was 7 km. The main cause for error growth for altitudes above 3,200 km is

the increasing gaps in the receiver’s visibility of GPS satellites with the increase in

altitude. This single-channel receiver is mentioned simply as an example of the types of

equipment that could be placed on a microsatellite. For the purposes of this thesis, the

hostile microsatellite is assumed to be equipped with a suitable multi-channel space

Global Positioning System (SGPS) receiver and its position will be considered perfectly

known.

 13

2.3 Satellite Laser Ranging (SLR)

 Although satellite laser ranging (SLR) is a technique that allows range

measurement with an absolute accuracy on the order of + 1 cm, the tracked satellite must

be specially equipped with retroreflectors, which are sometimes called corner reflectors.

The retroreflectors are designed so as to reflect the illuminating laser pulse back to the

transmitting source regardless of the angle of incidence on the reflector, thus allowing

precise measurements to be made of the returned pulse’s phase and round-trip time of

flight (NASA Instrument and Sensing Technology: Satellite Laser Technologies

webpage). Jon Schwartz, in his paper “Pulse Spreading and Range Correction Analysis

for Satellite Laser Ranging” further explains the laser retroreflector array (LRA) with the

following

 An LRA is a passive device used as the lidar target for ground-based laser
 ranging stations. The LRA is composed of a set of retroreflectors

precisely located in position and orientation (generally to within 1 mm and
1o, respectively) relative to some fixed point or axis. It is the precision of
the location of the cube corner retroreflectors (CCRs) in the LRA that
allow ranging measurements to be made to the centimeter level.
(Schwartz, 3597)

 According to information on the International Laser Ranging Service’s website

(http://ilrs.gsfc.nasa.gov/), only 75 past or current satellites/space missions have been

equipped for laser ranging. The majority of these missions are dedicated to Earth

observation and geophysical research; however, interestingly, thirty of these missions

could be considered military related. Twenty-eight of these missions are Russian Global

Navigation Satellite System (GLONASS) satellites and two are United States Global

Positioning System satellites (GPS 35 and GPS 36). Another interesting fact is three of

the missions listed are Apollo 11, 14, and 15. These missions left reflector equipment on

 14

the surface of the Moon so ranging tests could be performed from stations on Earth.

Apparently, power generation at ground-based stations for transmitting the laser pulse

great distances is not a limiting factor, as the distance from the Earth to the Moon is

356,400 km.

 At the other end of the satellite laser ranging spectrum from large, powerful laser

ground stations is a portable system. Engineers have developed the French Transportable

Laser Ranging Station (FTLRS) system whose total mass is approximately 300 kg. The

optical instrument is a 13-cm diameter telescope installed on a motorized mount. FTLRS

can track satellites at altitudes of as much as 3,000 km and is designed to range to the

Laser Geodynamic Earth Orientation Satellite (LAGEOS) at 6,000 km in another planned

upgrade. The standard error of individual measurements during the first observation

campaign were estimated to be on the order of 2-3 cm (Nicolas, 402). The laser is an

Nd:YAG with a double-pass amplifier. Its wavelength is 532 nm and its energy is 100-

mJ at 1,064 nm. The laser pulse-width is 100 ps. Despite the high precision ranging

measurements, one must keep in mind that satellite laser ranging in this manner assumes

a cooperative target equipped with retroreflectors and thus a system such as this is not

likely to be used by a “low-tech” adversary.

 Since the most probable target satellites for the parasitic satellite will not, in

general, be equipped with retroreflectors, then if a laser system is to be used for tracking,

it will have to be in a more traditional radar mode whereby the laser illuminates the target

satellite’s skin and produces a return. A quick survey of the United States Air Force’s

Maui Space Surveillance System (MSSS) shows the state-of-the-art for such a system. In

the paper “HI-CLASS on AEOS: A Large Aperture Laser Radar for Space

 15

Surveillance/Situational Awareness Investigations,” authors Kovacs, et al, report that the

Air Force Research Laboratory’s Directed Energy Directorate (AFRL/DE) installed in

late 2000, a wideband, 12 Joule, 15-Hz, CO2 laser radar on the 3.67-meter aperture

Advanced Electro-Optics System (AEOS) telescope (Kovacs, 298). MSSS also has the

HIgh-Performance CO2 Ladar Surveillance Sensor (HI-CLASS) on the 0.6-meter

aperture Laser Beam Director (LBD). The article further states “the moderate power

(~180 watts) HI-CLASS/AEOS system generates multiple, coherent waveforms for

precision satellite tracking and characterization of space objects for 1-m2 targets at ranges

out to 10,000 km. This system also will be used to track space objects smaller than 30-

cm at ranges to 2,000 km.” (Kovacs, 298) Authors Hasson, et al, give more specific HI-

CLASS/AEOS performance parameters in their paper “Use of Laser Radar for Small

Space Object Experiments.” According to them, the HI-CLASS LBD can perform

precision 1-m2 satellite tracking to ranges of 2,000 km with accuracies of + 5 m in range

and + 5 m/s in range rate. HI-CLASS can also track 5-cm2 objects to 1,000 km. In

comparison, the larger AEOS telescope can perform precision 1-m2 satellite tracking to

ranges of 10,000 km with accuracies of + 1-3 m in range and + 1 m/s in range rate.

AEOS can also perform sub-cm2 object tracking up to 1,000 km (Hasson, 366). To put

these performance capabilities in perspective in terms of a microsatellite, the Tsinghua-

1’s physical parameters were 0.07-m3 volume with a mass of 50 kg, according to a report

posted on the SpaceDaily website by reporter Wei Long July 11, 2000. Assuming a

simple cube shape for the Tsinghua-1 satellite, 0.07-m3 volume translates to a length of

41.21 cm per side or an area of 1,698 cm2 (0.1698 m2). The implication of this area is

even the powerful AEOS telescope cannot track Tsinghua-1 all the way to 10,000 km.

 16

 Montenbruck and Gill point out additional limitations of SLR in their book,

Satellite Orbits: Models, Methods, and Applications,

 It is noted that laser tracking (other than radar tracking) does not allow
 auto-tracking of satellites, but depends on the availability of high-
 precision a priori orbit elements for antenna pointing. Furthermore, the

use of SLR for regular tracking is restricted due to its dependence on the
weather at the laser stations…(Montenbruck, 203)

2.4 Optical Tracking

 Once again, the scarcity of open-source information on tracking systems of

foreign countries forces one to look at the capabilities of the United States Air Force.

At the large end of the size spectrum for optical tracking systems, the USAF operates the

Ground Based Electro-Optical Deep Space Surveillance (GEODSS) system. At the small

end of the size spectrum is the Raven automated small telescope system.

 The GEODSS system has four operational sites located at Socorro, New Mexico;

Maui, Hawaii; Diego Garcia, British Indian Ocean Territories; and Moron, Spain. The

main telescope at each of these sites has a 40-inch aperture telescope which has the

capability to track an object the size of basketball (457.303 cm2) at geosynchronous range

(http://www.globalsecurity.org/space/systems/geodss.htm).

 The Raven automated small telescope system grew out of a program initially set

up in 1997 to use small (diameter < 0.5 meters) telescopes to track near Earth asteroids.

The extension to tracking man-made satellites was a natural progression. As described

by Paul Sydney, et al, “the Raven system is a design paradigm, not a specific

configuration of components. Depending on the mission of the particular telescope, the

design will be modified using commercial hardware and software, to optimize the

 17

configuration for that mission” (Sydney, 237). The design paradigm is to use commercial

off-the-shelf (COTS) equipment originally designed for amateur astronomy as the

complete Raven system. The Raven at the Maui Space Surveillance System consists of

14.5-inch diameter f/3 Torus Optics Newtonian telescope on a Paramount GT 1100

German Equatorial mount. The imaging device is a charge-coupled device (CCD).

Activating the CCD shutter triggers a PC-based GPS receiver and timing card for

accurate time tagging of each image. The Raven system is controlled by two computers,

one for controlling the telescope and one for data processing. The system also has suite

of weather monitoring equipment (Sydney, 238).

 In Section 3 of their paper, Autonomous Operations, Sydney, et al, discuss the

criteria the Raven control system uses to select satellites for tracking. Criterion number

five, rate through the telescope’s field-of-view (FOV), may be the limiting factor in using

Raven, or a similar system, for tracking low earth orbiting satellites. The Raven control

software does not allow tracking of objects whose angular velocity exceeds 45

arcminutes/minute (0.75 degree/minute). This restriction is described as relating to the

CCD imaging operation and does not appear to be a physical limitation in terms of

telescope slewing rate (Sydney, 238). Even so, this angular velocity limitation prohibits

the tracking of satellites below altitudes of approximately 13,930 km according to the

following equation from Space Mission Analysis and Design, 3rd Ed.:

 orbital angular velocity (deg/min) = 2/3610170415.2 −× r (1)

 where r is the distance from the center of the central body (Earth) to the satellite in

kilometers. To determine the altitude, subtract the Earth’s radius, 6378.135 km from r.

 18

Thus, a Raven-type system would most likely not be used in a microsatellite rendezvous

mission below altitudes of 13,930 km. In terms of measurement accuracy, the Raven

system “demonstrated the ability to produce topocentric right ascension and declination

observations of GEO satellites with RMS errors under two arcseconds (one standard

deviation).” (Sydney, 241)

 At approximately the same time the Air Force Research Laboratory was

developing the Raven system, engineers at the Rocketdyne Division of Boeing North

American were experimenting with a slightly smaller telescope with emphasis on

portability. In their paper “Description and Experimental Results of a 58-lb Portable

LEO Satellite Tracker,” authors Tansey, Campbell, and Koumvakalis outline their use of

an 8-inch diameter f/10 telescope on a T-Point mount and controlled by commercial

software. This system is reportedly capable of adjustable slew rates to six degrees per

second (360 degrees/minute) (Tansey, 78). This means the system can track at all

altitudes as the angular velocity at the surface of the Earth is 4.261 degrees/minute.

Tansey, et al report “typical tracks at 600 km to 1,000 km are routine with track errors

less than 50 µrad [0.00286 deg] peak to valley for the duration of the pass” (Tansey, 83).

2.5 Selection of Tracking System Architecture

2.5.1 Ground Tracking Systems

 Having reviewed the candidate tracking systems, their capabilities and their

limitations, it is evident that no single system is sufficient to cover all possible mission

orbits (LEO, MEO, and GEO). The space tracking systems that have evolved have done

so based on those very capabilities and limitations for their type. Thus, those countries or

 19

persons involved in satellite tracking must use a ‘system of systems’ in order to cover all

orbits. While this does complicate matters in terms of the number of different systems

that must be employed, it simplifies matters in that one can choose the simplest system

within each type. Thus, for altitudes below approximately 14,000 km, radar is the most

likely system to be used with a relatively modest ground station since a suitable mobile

system was not found. Laser ranging could also be used for LEO orbits below 10,000

km, but it must be remembered that even the AEOS system could not track Tsinghua-1

all the way to 10,000 km. For orbits higher than 14,000 km, the Raven small telescope

can be used.

2.5.2 Microsatellite On-board Tracking Sensor

 A literature review was also conducted to find background information on sensors

for satellite rendezvous. Again, great difficulty was encountered in trying to find

information suitable for a microsatellite rendezvous mission with a non-cooperative

target. Several articles were found that described video systems for terminal control;

laser ranging between cooperative targets equipped with retroreflectors; relative GPS;

and rendezvous radars for larger spacecraft such as the Space Shuttle and the Orbital

Maneuvering Vehicle. The Space-based Radar Handbook describes both of these

systems, but regrettably has no information on microsatellites as its publication date is

1989. For background purposes, the performance of the Space Shuttle’s rendezvous

radar and the Orbital Maneuvering Vehicle’s radar are shown in Table 1.

 20

Table 1 Examples of Space Rendezvous Radar Parameters
 Space Shuttle

Rendezvous Radar
OMV
Radar

Range 12 nmi 4.5 nmi
Angle accuracy (3σ) 8 mrad 20 mrad
Angle rate (3σ) 0.14 mrads/s N/A
Range accuracy (3σ) 80 ft, R < 1.3 nmi

1% of R, 1.3 < R < 4.9 nmi
300 ft, 4.9 < R < 12 nmi

Greater of 20 ft or
2% of range

Range rate accuracy (3σ) 1 ft/s, R < 10 nmi Greater of 0.1 ft/s or
2% of range rate

Space Shuttle Rendezvous Radar data (Cantafio, 201); OMV data (Cantafio, 210)

 An example of a range measuring system that might be suitable for a

microsatellite mission is the laser rangefinder on the Near-Earth Asteroid Rendezvous

(NEAR) spacecraft. The NEAR laser rangefinder (NLR) was developed at the Johns

Hopkins Applied Physics Laboratory in the early 1990s. The complete NLR system has

a mass of only 4.9 kg and a volume of 14.75” x 9” x 8.5.” NLR has a maximum range of

just over 100 km and a range accuracy of 2 meters (Cole, 124). Since the NLR is a laser

rangefinder, no value for range rate measurement was listed. For the MATLAB

simulation, it is assumed that a laser radar of comparable size and range and range rate

measuring capability is available. The range rate accuracy is assumed to be 2 m/s.

 21

III. Methodology

For the problems of initial orbit determination and orbit updating, various

combinations of observation data must be processed using a suitable solution method. In

Table 6-1 of Fundamentals of Astrodynamics and Applications, Vallado lists those data

combinations and solution methods along with any restrictions in terms of minimum sets

of a particular observation combination. Vallado’s Table 6-1 is reproduced below.

Table 2 Types of Tracking Data for Initial Orbit Determination and Orbit Updating
Data Type Restrictions Solution Method

Range rate (ρ&) None Estimation
Azimuth (β), elevation (el) 3 sets minimum Laplace, Gauss, Double-r
Range (ρ), azimuth (β),
elevation (el)

2 sets minimum SITE-TRACK, then Lambert (2) or
GIBBS/HGIBBS

Range (ρ), azimuth (β),
elevation (el), range rate (ρ&)

2 or 3 sets
minimum

SITE-TRACK

Range (ρ), azimuth (β),
elevation (el), range rate (ρ&),
azimuth rate (β&),
elevation rate (le&)

None SITE-TRACK

Topocentric right ascension, tα ,
and declination, tδ

3 sets minimum Laplace, Gauss, Double-r

Range (ρ) 6 simultaneous,
None

Trilateration, Estimation

 (Vallado, 378)

For Table 2 above, the solution methods in bold italics are algorithms Vallado has

outlined in his book. Several of those algorithms, or pieces thereof, were implemented in

this thesis; however, portions of those algorithms using rate information other than range

rate were not utilized.

 22

3.1 Simulation Data Generation

Since “real” observations were not taken with “real” sensors to process through

the non-linear least squares orbit determination filter, simulated data for range, range rate,

azimuth, elevation, right ascension, and declination were generated. The following

equations were used to generate the simulated data.

The satellite’s state vector, X
r

, is represented with the Earth-centered Inertial

(ECI) position vector, rr , and velocity vector, vr . X
r

 is written

 X
r

 =

























K

J

I

K

J

I

v
v
v
r
r
r

 =

























z
y
x
z
y
x

&

&

&
 (2)

The equations of motion for the two-body problem are written

 3r
rr
r

&&r µ−= (3)

where r&&r is the satellite’s acceleration vector, 2
3

4415.600,398 s
km=µ is the Earth’s

gravitational parameter, and 222 zyxr ++= is the magnitude of the position vector.

Using this formulation, the equations of motion for the satellite’s state vector in first

order form are

X
dt
Xd &r
r

= =











−

3r
r

v r
r

µ (4)

 23

 The equations of motion were integrated using MATLAB’s built-in ordinary

differential equation solver function, ode45, to obtain the satellite’s state at specified time

intervals along the trajectory. Then using equations from Vallado’s Algorithm 15:

RAZEL (Vallado, 173), range ρ , azimuth β , and elevation el were calculated.

 To begin the calculations for range, the tracking site’s ECI position vector must

be determined. First, two auxiliary terms associated with the Earth’s shape are

calculated. The first auxiliary term is

)(sin1 22
gde

RC
φ⊕

⊕
⊕

−
= (5)

where kmR 1363.378,6=⊕ is the Earth’s equatorial radius, 560818192214.0=⊕e is the

Earth’s shape eccentricity (not its orbital eccentricity), and gdφ is the tracking site’s

geodetic latitude. The second auxiliary term is

)1(2
⊕⊕⊕ −= eCS (6)

Using these two auxiliary terms, the horizontal (in the plane of the Earth’s equator) and

the vertical (towards the North Pole for a positive (northern) latitude and towards the

South Pole for a negative (southerly) latitude) components of the tracking site’s position

vector are determined next. The horizontal component is

)cos()(gdellphCr φδ += ⊕ (7)

where ellph is the tracking site’s height in kilometers (or other consistent units) above the

reference geoid. The vertical component is

)sin()(gdellpK hSr φ+= ⊕ (8)

The tracking site’s ECI position vector is then

 24
















=

K

LST

LST

siteIJK

r
r
r

r)sin(
)cos(

θ
θ

δ

δ
r (9)

where LSTθ is the Local Sidereal Time (LST) at the tracking site. Local Sidereal Time

can be calculated using Vallado’s Algorithm 1: LSTIME. First, calculate 1UTT , the

number of Julian centuries elapsed from the epoch J2000,

525,36
0.545,451,20

1
−

=
JDTUT (10)

where 0JD is the Julian day number for the calendar date of interest and 2,451,545.0 is

the Julian day of January 1, 2000. Second, calculate the Greenwich mean sidereal time at

midnight 0000 Universal Time, 0GSTθ , in degrees, for the date of interest

 3
1

82
110 106.200038793.077005361.000,364606184.100 UTUTUTGST TTT −×−++°=θ (11)

Third, calculate the Greenwich sidereal time for the specific time of the day by

10 UTGSTGST ⊕+= ωθθ (12)

where ⊕ω is the magnitude of the Earth’s rotational (angular) velocity and UT1 is the

elapsed time since midnight in seconds. Finally, local sidereal time is given by

λθθ += GSTLST (13)

where λ is the tracking site’s longitude (east longitude is positive and west longitude is

negative).

With both the satellite and the tracking site positions known, range in ECI

coordinates from the tracking station to the satellite may be calculated as

siteIJKIJKIJK rr rrr
−=ρ (14)

 25

The relative velocity vector from the tracking station to the satellite in ECI coordinates is

calculated next by

siteIJKIJK rv rrr&r ×−= ⊕ωρ (15)

where ⊕ω
r is the Earth’s rotational (angular) velocity vector in radians/sec given by
















=⊕

585530000729211.0
0
0

ω
r (16)

Once the ECI range and relative velocity vectors are determined, they must be

transformed (rotated) from the ECI coordinate system to the topocentric horizon SEZ

(South-East-Zenith) coordinate system. The combined transformation matrix
















−

−
=

)sin()sin()cos()cos()cos(
0)cos()sin(

)cos()sin()sin()cos()sin(

gdLSTgdLSTgd

LSTLST

gdLSTgdLSTgd

IJKtoSEZ
φθφθφ

θθ
φθφθφ

 (17)

leads to the rotations

[] IJKSEZ IJKtoSEZ ρρ
rr

= (18)

[] IJKSEZ IJKtoSEZ ρρ &r&r = (19)

The range (a scalar) is simply the magnitude (vector norm) of the SEZ range vector

SEZρρ
r

= (20)

The elevation angle from the tracking station’s horizon to the satellite is given by









= −

ρ
ρZel 1sin (21)

and the azimuth angle, β , is given by

 26

22
)sin(

ES

E

ρρ
ρβ
+

= (22)

22
)cos(

ES

S

ρρ
ρβ
+

−
= (23)









= −

)cos(
)sin(tan 1

β
ββ (24)

The final equation used from Vallado’s RAZEL algorithm yields the range rate, which is

given by

ρ
ρρρ SEZSEZ
&rr

&
⋅

= (25)

In addition to developing equations for range, range rate, azimuth, and elevation,

equations were also developed for topocentric right ascension and declination using

Vallado’s Algorithm 14: Topocentric (Vallado, 168). This algorithm is analogous to the

RAZEL algorithm since the range vector in ECI coordinates is calculated but is not

transformed to SEZ coordinates. The declination angle (positive above the celestial

equator and negative below) is determined similar to elevation by

ρ
ρδ K

t = (26)

and the right ascension is determined similar to azimuth by

22
)sin(

JI

J
t

ρρ
ρα
+

= (27)

22
)cos(

JI

I
t

ρρ
ρα
+

−
= (28)

 27









= −

)cos(
)sin(tan 1

t

t
t α

αα (29)

3.2 Initial Orbit Determination

With radar (or other sensor) providing range, azimuth, and elevation data, the

satellite’s position and velocity vectors in ECI coordinates can be calculated. First, the

satellite’s SEZ range coordinates are found using the radar data directly















−
=

)sin(
)sin()cos(
)cos()cos(

el
el
el

SEZ

ρ
βρ
βρ

ρ
r (30)

The range rate in SEZ coordinates is found by taking the derivatives of the range

component equations with respect to all three variables by the chain rule to yield

















+
+−
++−

=
leelel

elleelel
elleelel

SEZ

&&

&&&

&&&
&r

)cos()sin(
)cos()cos()sin()sin()sin()cos(
)sin()cos()cos()sin()cos()cos(

ρρ
ββρβρβρ
ββρβρβρ

ρ (31)

Next, the SEZ coordinate values must be transformed (rotated) to the IJK coordinate

frame by the combined transformation matrix

















−

−
=

)sin(0)cos(
)sin()cos()cos()sin()sin(
)cos()cos()sin()cos()sin(

gdgd

LSTgdLSTLSTgd

LSTgdLSTLSTgd

SEZtoIJK
φφ

θφθθφ
θφθθφ

 (32)

which then leads to the rotations

[] SEZIJK SEZtoIJK ρρ
rr

= (33)

[] SEZIJK SEZtoIJK ρρ &r&r = (34)

The ECI position and velocity vectors are then determined by

 28

siteIJKIJKIJK rr rrr
+= ρ (35)

siteIJKIJKIJK rv rr&rr
×+= ⊕ωρ (36)

Since radar sites do not always gather angular rate data, then the Gibbs and Herrick-

Gibbs Methods can be used to determine the initial velocity vector, 2vr , associated with

the second of three sequential position vectors, 2r
r .

3.2.1 Gibbs Method for Initial Orbit Determination

 The Gibbs Method in Vallado’s algorithm 48 (Vallado, 414) is outlined below.

First, assuming three sequential position vectors, in ECI coordinates are available, then

form the vectors

2112 rrZ rrr
×= (37)

3223 rrZ rrr
×= (38)

1331 rrZ rrr
×= (39)

Next, test that the input vectors are coplanar by calculating the angle













 ⋅
−°= −

123

1231cos90
rZ
rZ

cop rr

rr

α (40)

If the vectors are exactly coplanar, then 0=copα . If the vectors are not exactly coplanar,

then the user must determine an acceptable error tolerance and proceed. Vallado

recommends no more than 2 or 3 degrees. The vectors must also have some angular

separation within their common plane. The Gibbs Method works with at least 1o

 29

separation and is superior to the Herrick-Gibbs Method when the separation is greater

than 5o. The angular separation can be tested by calculating the two angles

21

21
12)cos(

rr
rr
rr

rr
⋅

=α (41)

32

32
23)cos(

rr
rr
rr

rr
⋅

=α (42)

where 12α is the angle between vectors 1r
r and 2r

r and 23α is the angle between vectors 2r
r

and 3r
r . If the angular separation is sufficient, then four intermediate vectors can be

calculated

() () ()123312231 ZrZrZrN
rrrr

++= (43)

312312 ZZZD
rrrr

++= (44)

321213132)()()(rrrrrrrrrS rrrr
−+−+−= (45)

2rDB rrr
×= (46)

Using one final scalar given by

ND
Lg

µ
= (47)

calculate the velocity vector associated with 2r
r

SLB
r
L

v g
g rrr

+=
2

2 (48)

With both position and velocity known, the orbit is considered determined.

 30

3.2.2 Herrick-Gibbs Initial Orbit Determination

 The Herrick-Gibbs Method, which also determines the velocity vector associated

with the second of three sequential position vectors, is used when the angular separation

is less than 1o. The Julian Dates associated with the three position vectors are also used

in this algorithm. First, calculate the time differences between the position vectors

1331 JDJDt −=∆ (49)

2332 JDJDt −=∆ (50)

1221 JDJDt −=∆ (51)

From this point, the Herrick-Gibbs Method is similar to the Gibbs Method by also testing

whether the position vectors are coplanar and checking the angular separation

3223 rrZ rrr
×= (52)













 ⋅
−°= −

123

1231cos90
rZ
rZ

cop rr

rr

α (53)

21

21
12)cos(

rr
rr
rr

rr
⋅

=α (54)

32

32
23)cos(

rr
rr
rr

rr
⋅

=α (55)

If the degree of coplanarness and separation are acceptable, then the velocity vector is

23
23221

213213
13121

322 12
1)(

12
1 r

rtt
ttr

rtt
tv rrr









+

∆∆
∆−∆+








+

∆∆
∆−=

µµ

33
33132

21 12
1 r

rtt
t r









+

∆∆
∆+

µ (56)

 31

and, again, with both the position and velocity known, the orbit is considered determined.

The orbit determined by the Gibbs or Herrick-Gibbs methods can then be used as the

estimate for the satellite’s reference trajectory in the non-linear least squares filter.

3.3 Non-linear Least Squares Orbit Determination Filter

 Wiesel’s non-linear least squares algorithm from his book Modern Methods of

Orbit Determination is described in this section. First, assuming there are multiple

observations, then for each observation time ti , propagate the state vector to the

observation time ti and obtain the state transition matrix Φ ()0, tti . With the satellite’s

state vector written as

























=

z
y
x
z
y
x

X

&

&

&

r
 (57)

the state transition matrix is a 6 x 6 matrix whose components are the partial derivatives

of each state component with respect to each component of the state itself

 32







































∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=Φ

z
z

y
z

x
z

z
z

y
z

x
z

z
y

y
y

x
y

z
y

y
y

x
y

z
x

y
x

x
x

z
x

y
x

x
x

z
z

y
z

x
z

z
z

y
z

x
z

z
y

y
y

x
y

z
y

y
y

x
y

z
x

y
x

x
x

z
x

y
x

x
x

&

&

&

&

&

&&&&
&

&

&

&

&

&&&&
&

&

&

&

&

&&&&
&&&

&&&

&&&

 (58)

At ti = t0 this results in the 6 x 6 identity matrix, 66xI ,

























=Φ

100000
010000
001000
000100
000010
000001

 (59)

Next, obtain the residual vector ri = zi – G(X
r

). zi is the n x 1 measured data vector for

this observation time, where n is the number of types of observations being taken. For

example, if at observation ti, observations were taken for range, azimuth, and elevation,

then n = 3. G(X
r

) is the predicted data vector as a function of the current state vector X
r

.

The form of G(X
r

) depends on what predicted data is needed. For example, assume a

radar, whose position vector is known, is measuring range, azimuth, and elevation to a

target satellite, then the predicted range, azimuth, and elevation based on the propagated

reference trajectory would be calculated using the same equations that were used to

generate the simulation data described in section 3.1. These predicted data are then

subtracted from the corresponding measured data to form the residual vector

 33

predictedmeasuredi zzr −= (60)

which would take the form

















−
−
−

=

predictedmeasured

predictedmeasured

predictedmeasured

i

elel
r ββ

ρρ
 (61)

It should be noted that noise was added to the generated data using a Gaussian random

number in order to give “realistic” measurement data. Next, calculate Hi for this

particular data point. Hi, the linear observations model, is the n x 6 matrix of partial

derivatives of the G vector with respect to the state evaluated on the reference trajectory

where n is still the number of types of observation being taken

refX
j

i
ij X

GH |
∂
∂

= (62)

where i = 1 to n is the G vector component being differentiated and j = 1 to 6 is the state

vector component G is the differentiation variable. Together, i and j, are the row and

column indices of the n x 6 H matrix.

The G vectors and their associated H matrices for the data types coded in the

simulation program are shown next. Since H is an n x 6 matrix, if a specific value for an

element of H is not shown, it is assumed to be 0.

Gi(X
r

) = 222, zyxRange ++=ρ (63)

r
x

zyx
xHi =

++
=

2221 (64)

r
y

zyx
yHi =

++
=

2222 (65)

 34

r
z

zyx
zHi =

++
=

2223 (66)

Gi (X
r

) = 





= −

x
yAzimuth 1tan,β (67)

2

2

1

1 





+

−

=

x
y

x
y

Hi (68)

22

1

1







+

=

x
y

xHi (69)

03 =iH (70)

Gi (X
r

)











+
== −

22

1tan,
yx

zelelevation (71)

()

()






+

+

+

−

=

22

2

2/322

1

1
yx

z
yx
xz

Hi (72)

()

()






+

+

+

−

=

22

2

2/322

2

1
yx

z
yx
yz

Hi (73)

()

()






+

+

+=

22

2

2/122

3

1

1

yx
z
yxHi (74)

 35

Gi (X
r

) = Range rate,
ρ
ρρρ
&rr

&
⋅

= (75)

ρ&
r is the relative velocity vector in ECI coordinates from the tracking site to the satellite

for the case of the ground-based orbit determination filter or the relative velocity vector

in ECI coordinates from the microsatellite to the target satellite for the on-orbit version of

the orbit determination filter

















−
−
−

=

IJKsiteIJKsat

IJKsiteIJKsat

IJKsiteIJKsat

zz
yy
xx

,,

,,

,,

&&

&&

&&
&rρ (76)

















−
−
−

=

IJKmicroIJKett

IJKmicroIJKett

IJKmicroIJKett

zz
yy
xx

,,arg

,,arg

,,arg

&&

&&

&&
&rρ (77)

When the dot product and division have been performed the resulting equation for range

rate is then

()() ()() ()()
() () ()222

sitesatsitesatsitesat

sitesatsitesatsitesatsitesatsitesatsitesat

zzyyxx

zzzzyyyyxxxx

−+−+−

−−+−−+−−
=

&&&&&&
&ρ (78)

and similarly for the on orbit case from microsatellite to the target satellite. The 1 x 6 H

matrix for range rate is

21 ρ
ρρ

ρ
ρ xx

iH
&&

−= (79)

22 ρ
ρρ

ρ
ρ yy

iH
&&

−= (80)

23 ρ
ρρ

ρ
ρ zz

iH
&&

−= (81)

 36

ρ
ρ x

iH =4 (82)

ρ
ρ y

iH =5 (83)

ρ
ρ z

iH =6 (84)

Gi (X
r

) = Right 







= −

IJKx

IJKyAscension
,

,1tan,
ρ
ρ

α (85)

2

,

,

2
,

,

1

1 







+

−

=

IJKx

IJKy

IJKx

IJKy

iH

ρ
ρ

ρ
ρ

 (86)

2

,

,

,
2

1

1









+

=

IJKx

IJKy

IJKx
iH

ρ
ρ

ρ
 (87)

03 =H (88)

Gi (X
r

) 













+
== −

2
,

2
,

,1tan,
IJKyIJKx

IJKz
tndeclinatio

ρρ

ρ
δ (89)

()

()








+
+

+

−

=

2
,

2
,

2
,

2/32
,

2
,

,,

1

1
IJKyIJKx

IJKz

IJKyIJKx

IJKzIJKx

iH

ρρ
ρ
ρρ

ρρ

 (90)

 37

()

()








+
+

+

−

=

2
,

2
,

2
,

2/32
,

2
,

,,

2

1
IJKyIJKx

IJKz

IJKyIJKx

IJKzIJKy

iH

ρρ
ρ

ρρ

ρρ

 (91)

()

()








+
+

+
=

2
,

2
,

2
,

2/12
,

2
,

3

1

1

IJKyIJKx

IJKz

IJKyIJKx
iH

ρρ
ρ
ρρ

 (92)

Next, calculate the observation matrix, Ti = HiΦ, and add new terms to the running sums

of the matrix

∑ −

i
ii

T
i TQT 1 (93)

and the vector

∑ −

i
ii

T
i rQT r1 (94)

where Q is the instrumental covariance (or observation covariance) matrix and 1−Q is its

inverse. The matrix ii
T

i TQT 1− must be invertible for a new estimate of the reference

trajectory to exist. Wiesel calls this the observability condition. When all data has been

processed calculate the covariance of the correction

1

i
i

1-
i

T
i TQT

−








= ∑xPδ (95)

and the state correction vector at epoch

∑ −=
i

ii
T

ix rQTPtx rr 1
0)(δδ (96)

Update the reference trajectory vector by adding the state correction vector

 38

)()()(0001 txtXtX refref
srr

δ+=+ (97)

Determine if the process has converged. If it has, then 1+refX
r

is the new estimate of the

reference trajectory with covariance xPδ . Finally, check the residuals to see if they are of

appropriate magnitude and distribution.

3.4 Perturbations

Perturbations, deviations from a normal, idealized, or unperturbed motion, which

can be included within the dynamics model in the simulation include Earth oblateness

effects from the J2 zonal gravity harmonic, third-body gravitational effects from the Sun

and the Moon, and atmospheric drag. Each is discussed below.

3.4.1 J2

The accelerations, in ECI coordinates, resulting from the Earth’s oblateness, or

non-spherical shape, are

































−

−









−

−









−

−

=

⊕

⊕

⊕

2

2

5

2
2

2

2

5

2
2

2

2

5

2
2

2

53
2

3

51
2

3

51
2

3

r
r

r
rRJ

r
r

r
rRJ

r
r

r
rRJ

a

KK

KJ

KI

J

µ

µ

µ

r (98)

where 0010826269.02 =J is the dimensionless second zonal gravity harmonic

coefficient, µ is the Earth’s gravitational parameter, and ⊕R is the Earth’s equatorial

radius.

 39

3.4.2 Third-Body Gravitational Effects

 The acceleration of the satellite relative to the Earth due to the gravitational

influence of a third body such as the Sun or Moon can be calculated by the following

equation from page 10 of Fundamentals of Astrodynamics

∑
=











−−

+
−=

n

j j

j

j

j
j r

r
r
r

Gmr
r

mmGr
3

3
1

1
3
2

2
123

12

21
12

)(
rr

r&&r (99)

where the first term is the two-body equation; however, this equation includes the

)(21 mm + term for completeness where 2m is the satellite’s mass . It is usually assumed

that the satellite’s mass is insignificant relative to the mass of the central body and is thus

dropped, leaving µ=1Gm , the gravitational parameter. The summation term is the third-

body contribution to the acceleration. jGm is 1.32712428E+11 km3/s2 for the Sun and

4,902.799 km3/s2 for the Moon. 2jrr is the vector from the third body to the satellite and

1jrr is the vector from the third body to the central body, which for this simulation is

Earth.

3.4.2.1 Sun Position Vector

 The Sun’s geocentric position vector to be used in the equation for third-body

gravitational effects can be calculated by Vallado’s Algorithm 18: Sun (Vallado, 183).

The algorithm begins by computing

525,36
0.545,451,21

1
−

= UT
UT

JDT (100)

 40

where 1UTT is the number of Julian centuries elapsed from the epoch J2000 and 1UTJD is

the Julian date of the time of interest.

The mean longitude of the Sun is

177005361.000,364606184.280 UTM T
sun

+°=λ (101)

The Sun’s mean anomaly is

TDBsun TM 05034.999,355277233.357 +°= (102)

TDBT , barycentric dynamical time, is a more precise parameter that includes more details

such as relativistic effects, etc. that are not needed for the level of precision for most

analyses. In this case, TDBT may be assumed to be approximately equal to 1UTT .

Then for this algorithm, the longitude of the ecliptic is

)2sin(019994643.0)sin(914666471.1 sunsunMecliptic MM
sun

+°+= λλ (103)

where the ecliptic is the mean plane of the Earth’s orbit about the Sun.

The magnitude of the Sun’s position vector, in astronomical units, is

)2cos(000139589.0)cos(016708617.0000140612.1 sunsunsun MMr −−= (104)

Also for this algorithm,ε , the obliquity of the ecliptic, which is the angle between the

Earth’s mean equator and the ecliptic, is given by

TDBT0130042.0439291.23 −°=ε (105)

Finally, the Sun’s position vector, in astronomical units, is given by
















=

)sin()sin(
)sin()cos(

)cos(

eclipticsun

eclipticsun

eclipticsun

sun

r
r

r
r

λε
λε

λ
r (106)

 41

3.4.2.2 Moon Position Vector

Similarly, the Moon’s geocentric position vector can also be computed by

Vallado’s Algorithm 19: Moon (Vallado,186). This algorithm also begins by computing

a time parameter

525,36
0.545,451,2−

= TDB
TDB

JDT (107)

The longitude of the ecliptic is

)05.404,9666.186sin(11.0
)05.999,355.357sin(19.0)70.397,9549.269sin(21.0
)23.534,8907.235sin(66.0)38.335,4132.259sin(27.1

)85.198,4779.134sin(29.68813.267,48132.218

TDB

TDBTDB

TDBTDB

TDBTDBecliptic

T
TT
TT

TT

+−
+−++
++−−

+++°=λ

 (108)

The latitude of the ecliptic is

)20.332,4076.217sin(17.0)18.003,63.318sin(28.0
)87.400,9602.228sin(28.0)03.202,4833.93sin(13.5

TDBTDB

TDBTDBecliptic

TT
TT

−−+−

+++°=φ
 (109)

The parallax is

)38.335,4132.259cos(0095.0)85.198,4779.134cos(0518.09508.0 TDBTDB TT −+++°=℘
)70.397,9549.269cos(0028.0)23.534,8907.235cos(0078.0 TDBTDB TT ++++ (110)

The magnitude of the position vector in Earth radii is then

)sin(
1
℘

=moonr (111)

The position vector is then

















+
−=

)sin()cos()sin()cos()sin(
)sin()sin()sin()cos()cos(

)cos()cos(

eclipticeclipticecliptic

eclipticeclipticecliptic

eclipticecliptic

moonmoon rr
φελφε
φελφε

λφ
r (112)

where ε , the obliquity of the ecliptic is given in radians by Equation 1-58 of Vallado

 42

3929 1080.81086.2000226966.040909280.0 TDBTDBTDB TTT −− ×+×−−=ε (113)

To convert from Earth radii to kilometers multiply by 6,378.1363.

3.4.3 Atmospheric Drag

 The acceleration due to atmospheric drag is given by Equation 7-24 from Vallado

(Vallado, 498)

rel

rel
rel

D
drag v

vv
m

Aca r

r
r 2

2
1 ρ−= (114)

where Dc is the satellite’s coefficient of drag, A is the satellite’s cross-sectional area

normal to the satellite’s velocity vector, m is the satellite’s mass, ρ is the atmospheric

density at the satellite’s altitude, and relvr is the satellite’s velocity vector relative to the

Earth’s rotating atmosphere. The relative velocity is given by
















−
+

=























−

+

=×−= ⊕

⊕

⊕

⊕

⊕

z
xy
yx

dt
dz

x
dt
dy

y
dt
dx

r
dt
rdvrel

&

&

&
rr

r
r ω

ω
ω

ω

ω (115)

The atmospheric density is given by an exponential model which gives values from 0 to

1,000 km of altitude. The exponential model is

H
hh

o

oellp

e
)(−−

= ρρ (116)

where oρ is the reference density for the specific altitude, ellph is the actual altitude of the

satellite, oh is the reference altitude, and H is the scale height. Vallado tabulates values

 43

for these parameters in Table 7-4 of his book, Fundamentals of Astrodynamics and

Applications.

3.5 Equations of Variation

 The equations of variation are the partial derivatives of the acceleration term

equations with respect to the state and are used to form the 6 x 6 A matrix, which in turn,

is used to form the derivative of the state transition matrix, Φ, as

),()(),(00 tttAtt
dt
d

Φ=Φ=Φ & (117)

The 36 components of Φ& are combined with the 6 components of the satellite’s state

vector derivatives X&
r

to form the “total” state derivative which is integrated by ode45.

3.5.1 Equations of Variation for the Two-Body Problem

From Wiesel (Wiesel, 78), the equations of variation for the basic two-body

problem are









=

φ
φ

rrA
I

tA)((118)

where 3 x 3φ is the null matrix, I is a 3 x 3 identity matrix, and rrA is























+
−

+
−

+
−

=

5

2

355

55

2

35

555

2

3

333

333

333

r
z

rr
yz

r
xz

r
yz

r
y

rr
xy

r
xz

r
xy

r
x

r

Arr

µµµµ

µµµµ

µµµµ

 (119)

 44

Since the acceleration terms for the two-body problem are dependent only on the

satellite’s position, the A matrix is non-zero and/or non-unity only where there are

position-related component terms. Any velocity related terms would appear in the three

rightmost columns, as will be seen in Section 3.5.4.

3.5.2 Equations of Variation for J2

 Similar to the basic two-body problem, the equations of variation for J2 are

dependent only on position-related terms and thus populate only the lower 3 x 3 corner of

the A matrix









=

φ
φφ

2
2,

J
Jrr A

A (120)

The equations for the individual components are









+








−








−−= ⊕ 9

22

7

2

52

2
2

241,2
105151

2
3

r
zx

r
x

rr
zRJAJ (121)









+






−







−−= ⊕ 9

2

72

2
2

242,2
10551

2
3

r
yz

r
y

r
zxRJAJ (122)

 















−






+






−







−−= ⊕ 110551

2
3

2

2

772

2
2

243,2 r
z

r
z

r
z

r
zxRJAJ (123)









+






−







−−= ⊕ 9

2

72

2
2

251,2
10551

2
3

r
xz

r
x

r
zyRJAJ (124)









+








−








−−= ⊕ 9

22

7

2

52

2
2

252,2
105151

2
3

r
zy

r
y

rr
zRJAJ (125)

 45

 















−






+






−







−−= ⊕ 110551

2
3

2

2

772

2
2

253,2 r
z

r
z

r
z

r
zyRJAJ (126)









+






−







−−= ⊕ 9

2

72

2
2

261,2
10553

2
3

r
xz

r
x

r
zzRJAJ (127)









+






−







−−= ⊕ 9

2

72

2
2

262,2
10553

2
3

r
yz

r
y

r
zzRJAJ (128)

 















−








+








−








−−= ⊕ 1105153

2
3

2

2

7

2

7

2

52

2
2

263,2 r
z

r
z

r
z

rr
zRJAJ (129)

3.5.3 Equations of Variation for Third-Body Gravitational Effects

 The equations of variation for third-body gravitational effects are also only

position-dependent. In this case, care must be taken to use the appropriate gravitational

parameter for the third-body of interest, ,3 body−µ and not that of Earth. The individual

component equations are









−−= −− 5

2

3341,3 31
r
x

r
A bodybody µ (130)

 5
3

42,3

3
r

xy
A body

body
−

− =
µ

 (131)

 5
3

43,3

3
r

xz
A body

body
−

− =
µ

 (132)

 5
3

51,3

3
r

xy
A body

body
−

− =
µ

 (133)









−−= −− 5

2

3352,3 31
r
y

r
A bodybody µ (134)

 46

 5
3

53,3

3
r

yz
A body

body
−

− =
µ

 (135)

 5
3

61,3

3
r

xz
A body

body
−

− =
µ

 (136)

 5
3

62,3

3
r

yz
A body

body
−

− =
µ

 (137)









−−= −− 5

2

3363,3 31
r
z

r
A bodybody µ (138)

3.5.4 Equations of Variation for Atmospheric Drag

 For the models incorporated in this simulation, only atmospheric drag has terms

that are velocity-dependent. For this reason, the equations of variation for atmospheric

drag also populate the lower right 3 x 3 corner of the A matrix in addition to the lower left

3 x 3 corner. The eighteen equations of variation for atmospheric drag are

() ()







 −
−−+−= ⊕⊕

⊕
rel

relD
drag v

xy
Hr

xvyx
m

AcA ωωωρ
&

&
2
1

41, (139)

 () ()








+

+
+

+
−−= ⊕

⊕⊕⊕ ωωωωρ rel
rel

relD
drag v

v
yx

Hr
yxyv

m
AcA

2

42, 2
1 &&

 (140)

 ()




 +
−−= ⊕

Hr
yxzv

m
AcA relD

drag
ωρ

&

2
1

43, (141)

 ()








+

+
−= ⊕

rel
rel

D
drag v

v
yx

m
AcA

2

44, 2
1 ωρ

&
 (142)

 ()()







 −+
−= ⊕⊕

rel

D
drag v

xyyx
m

AcA ωωρ
&&

2
1

45, (143)

 47

()







 +
−= ⊕

rel

D
drag v

yxz
m

AcA ωρ
&&

2
1

46, (144)

() ()








−

−
−

−
−−= ⊕

⊕⊕⊕ ωωωωρ rel
rel

relD
drag v

v
xy

Hr
xyxv

m
AcA

2

51, 2
1 &&

 (145)

() ()







 +
+−−−= ⊕⊕

⊕
rel

relD
drag v

yx
Hr
yvxy

m
AcA ωωωρ

&
&

2
1

52, (146)

()




 −
−−= ⊕

Hr
xyzv

m
AcA relD

drag
ωρ

&

2
1

53, (147)

 ()()







 −+
−= ⊕⊕

rel

D
drag v

xyyx
m

AcA ωωρ
&&

2
1

54, (148)

()








+

−
−= ⊕

rel
rel

D
drag v

v
xy

m
AcA

2

55, 2
1 ωρ

&
 (149)

()







 −
−= ⊕

rel

D
drag v

xyz
m

AcA ωρ
&&

2
1

56, (150)

()







 −
−−−= ⊕⊕

rel

relD
drag v

xy
Hr

xvz
m

AcA ωωρ
&

&
2
1

61, (151)

()







 +
+−−= ⊕⊕

rel

relD
drag v

yx
Hr
yvz

m
AcA ωωρ

&
&

2
1

62, (152)





−−=

Hr
zvz

m
AcA relD

drag &ρ
2
1

63, (153)

()







 +
−= ⊕

rel

D
drag v

yxz
m

AcA ωρ
&&

2
1

64, (154)

()







 −
−= ⊕

rel

D
drag v

xyz
m

AcA ωρ
&&

2
1

65, (155)

 48









+−= rel

rel

D
drag v

v
z

m
AcA

2

66, 2
1 &

ρ (156)

 49

IV. Results and Analysis

4.1 Gibbs and Herrick-Gibbs Initial Orbit Determination Methods

Although a possible satellite tracking architecture employing a system of systems

that allowed satellite tracking at all ranges from low-Earth orbit (LEO) to

geosynchronous (GEO) was suggested in Section 2.5, the most probable orbital region for

a covert microsatellite rendezvous mission is low-Earth orbit (LEO). With this fact in

mind, several cases based on a Defense Meteorological Satellite Program orbit at 830-km

sun-synchronous altitude were studied.

First, the Gibbs and Herrick-Gibbs initial orbit determination methods were

compared for performance accuracy for their common application area of in-plane

angular separations between 1o and 5o. As previously stated in Section 1, the Gibbs

method is preferred for larger angular separations, especially over 5o, while the Herrick-

Gibbs method is preferred for smaller angular separations. Simulated tracking data

consisting of range, azimuth, and elevation measurements was generated using the

accuracy numbers of both the Eglin Spacetrack radar and the Russian Don-2M anti-

ballistic missile radar and corrupted with a random number generator to simulate process

noise. The initial state vector used as the truth model had an epoch of April 5, 2003 at

00:00:00.00 UCT given by

























−
−

−

=

skm
skm
skm

km
km

km

XTRUTH

/350048.7
/251102.0
/101099.1

0.0
713446.7027

648663.1602

r

 50

The simulated data for the Don-2M radar assumed a range accuracy of 200 meters

and 0.03o in both azimuth and elevation. Using equation (30) from Section 3, this data

was used to calculate x, y, and z position coordinates in the SEZ-frame and then

transformed to the IJK-frame. For the case of 1o of angular separation, the three position

vectors used in both the Gibbs and Herrick-Gibbs methods are given in Table 3.

Table 3 Position Vectors from the Don-2M Radar Separated by 1o
 x (km) y (km) z (km)
1r 1,630.53547 -7,019.29836 -119.05177

2r 1,599.46588 -7,028.79482 15.66486

3r 1,571.1354 -7,034.33703 147.6602

Remembering that both the Gibbs and Herrick-Gibbs methods both determine the

velocity associated with the second position vector, 2r , their results are shown in Table 4.

Table 4 State Vectors Separated by 1o from Don-2M Radar Data
 x (km) y (km) z (km) x& (km/s) y& (km/s) z& (km/s)

Gibbs 1,599.46588 -7,028.79482 15.66486 -1.02787 -0.25881 4.61946
Herrick-Gibbs 1,599.46588 -7,028.79482 15.66486 -1.65012 -0.41776 7.40921

 The same type of data was generated for the Eglin Spacetrack radar with assumed

accuracies of 5 meters in range and 0.0154o in azimuth and 0.0147o in elevation. The position

vectors generated from simulated Eglin data are given in Table 5 and the results of the Gibbs and

Herrick-Gibbs methods using this data are shown in Table 6.

 51

Table 5 Position Vectors from the Eglin Spacetrack Radar Separated by 1o
 x (km) y (km) z (km)
1r 1,629.78305 -7,022.51937 -116.51275

2r 1,599.99858 -7,028.25713 14.87741

3r 1,569.93708 -7,032.14408 146.52768

Table 6 State Vectors Separated by 1o from Eglin Spacetrack Radar Data

 x (km) y (km) z (km) x& (km/s) y& (km/s) z& (km/s)
Gibbs 1,599.99858 -7,028.25713 14.87741 -1.91216 -0.30763 8.40459

Herrick-Gibbs 1,599.99858 -7,028.25713 14.87741 -1.66250 -0.26738 7.30721

The differences between the truth state vector and the two radar state vectors are shown

in Table 7.

Table 7 Difference Between Truth and Radar State Vectors for 1o Separation
 x (km) y (km) z (km) x& (km/s) y& (km/s) z& (km/s)
Don-2M
Gibbs -3.182783 -1.081374 15.66486 0.073229 -0.007708 -2.730588
Herrick-Gibbs -3.182783 -1.081374 15.66486 -0.549021 -0.166658 0.059162
Eglin
Gibbs -2.650083 0.53769 14.87741 -0.811061 -0.056528 1.054542
Herrick-Gibbs -2.650083 0.53769 14.87741 -0.561401 -0.016278 -0.042838

From the data in Table 7, several facts can be noted. For an angular separation of

approximately 1o, the Herrick-Gibbs is more accurate than the Gibbs method for both the

Don-2M and Eglin radars as expected. Although, the same 2r position vector was used in

the Gibbs and Herrick-Gibbs methods, the difference is in the velocity error magnitudes.

The velocity error magnitude for theDon-2M radar using the Gibbs method is 2.731 km/s

while the Herrick-Gibbs method velocity error magnitude is only 0.576 km/s, roughly

21% of the Gibbs method. For the more accurately measuring Eglin radar, the velocity

 52

error magnitude using the Gibbs method is 1.331 km/s compared to only 0.563 km/s for

the Herrick-Gibbs method. The Herrick-Gibbs method, in this case, is 2.36 times better.

The same type of comparison was made between the two methods and the two

radars using position vectors separated by approximately 5o. The position vectors

calculated from the simulated Don-2M data are shown in Table 8.

Table 8 Position Vectors from the Don-2M Radar Separated by 5o
 x (km) y (km) z (km)
1r 1,686.49254 -6,982.79171 -601.78566

2r 1,599.46588 -7,028.79482 15.66486

3r 1,501.82853 -7,019.49588 629.85516

The position vectors resulting from the Gibbs and Herrick-Gibbs methods are

given in Table 9.

Table 9 State Vectors Separated by 5o from Don-2M Radar Data
 x (km) y (km) z (km) x& (km/s) y& (km/s) z& (km/s)

Gibbs 1,599.46588 -7,028.79482 15.66486 -1.07891 -0.21268 7.19367
Herrick-Gibbs 1,599.46588 -7,028.79482 15.66486 -1.10055 -0.21881 7.34038

Similarly, the position vectors calculated from the simulated Eglin data are shown

in Table 10 and the state vectors determined from these vectors are given in Table 11.

Table 10 Position Vectors from the Eglin Spacetrack Radar Separated by 5o
 x (km) y (km) z (km)
1r 1,684.70942 -6,982.28071 -601.80866

2r 1,599.99858 -7,028.25713 14.87741

3r 1,502.43363 -7,021.71168 631.71985

 53

Table 11 State Vectors Separated by 5o from Eglin Spacetrack Radar Data
 x (km) y (km) z (km) x& (km/s) y& (km/s) z& (km/s)

Gibbs 1,599.99858 -7,028.25713 14.87741 -1.08650 -0.23523 7.35306
Herrick-Gibbs 1,599.99858 -7,028.25713 14.87741 -1.08633 -0.23499 7.35163

Finally, the difference between the truth model vector and the calculated state vectors is

shown in Table 12.

Table 12 Difference Between Truth and Radar State Vectors for 5o
 x (km) y (km) z (km) x& (km/s) y& (km/s) z& (km/s)
Don-2M
Gibbs -3.182783 -1.081374 15.66486 0.022189 0.038422 -0.156378
Herrick-Gibbs -3.182783 -1.081374 15.66486 0.000549 0.032292 -0.009668
Eglin
Gibbs -2.650083 0.53769 14.87741 0.014599 0.015872 0.003012
Herrick-Gibbs -2.650083 0.53769 14.87741 0.014769 0.016112 0.001582

Similar to the 1o case, several facts can be noted from Table 12. Although the

Gibbs method is expected to give more accurate results because of the larger angular

separation, it actually produces more error in the velocity components for the vectors for

the Don-2M radar. The Gibbs method velocity magnitude error for the Don-2M is 0.162

km/s while the Herrick-Gibbs method velocity error magnitude is only 0.0337 km/s, a

factor of 4.82 better. For the Eglin radar, the Gibbs method is more accurate as would

normally be expected but only slightly. The Gibbs method velocity error is 0.0217 km/s

and the Herrick-Gibbs method error is 0.0219 km/s, less than 1% difference. Finally, the

more accurately measuring Eglin radar produces the more accurate estimate of position

and velocity.

 54

4.2 Non-linear Least Squares Orbit Determination Filter

 This section discusses two illustrative examples about the performance of the

non-linear least squares orbit determination filter. First, Table 13 shows the effect on

accuracy of the estimated state vector with an increasing number of data points. The first

vector listed was used as the truth model of an 830-km altitude, sun-synchronous orbit to

generate 10, 20, 30, 40, and 100 data points at 60-second intervals using only simple two-

body motion and not including any perturbation forces. The second vector listed is the

initial estimate of the target satellite’s state vector used in the non-linear least squares

orbit determination filter. The position vector components x, y, and z were each

displaced 3.0 km to simulate a 5.2 km error in the knowledge of the target’s position.

Velocity components were not perturbed. In this rather simple case, it can be seen that

the target’s estimated converges closer to the truth model quickly with just 20 points but

 Table 13 Comparison of Estimated State Vectors Based on
 Increasing Number of Data Points

 x (km) y (km) z (km) x& (km/s) y& (km/s) z& (km/s)
Truth
(data)

1,602.648 -7,027.71 0.0 -1.101099-0.2511027.350048

Filter
Estimate

1,599.649 -7,030.71 3.0 -1.011099-0.2511027.350048

10 data
Points

1,586.364 -7,027.961.180124 -1.09513 -0.2455417.343681

20 data
Points

1,602.496 -7,027.81 -0.02949 -1.10077 -0.2511947.350026

30 data
points

1,602.63 -7,027.69 -0.00197 -1.10112 -0.2510667.350052

40 data
points

1,602.644 -7,027.74 -0.00205 -1.10105 -0.2511367.350043

100 data
points

1,602.643 -7,027.71 -0.00131 -1.1011 -0.2511017.350048

 55

is still approximately 184 meters in error. With 40 data points, the filter has converged

within approximately 30 meters of the truth model. At 100 data points, the estimated

state vector has converged to within approximately 5 meters of the truth model.

Obviously, more data is always desired from a standpoint of increased accuracy;

however, in a rendezvous mission, time to collect data may not be available and

rendezvous maneuvers will have to be planned based on less accurate position estimates.

The convergence criteria for all of these cases was each state component must be within 5

percent its variance as computed in the covariance matrix, P. Within the 6 x 6 covariance

matrix, the variances , 2
iσ , are the diagonal entries corresponding to the particular state

vector component i. Taking the square root of the variance gives the standard deviation

which then establishes an upper and lower bound on the vector component

)()(iiiii XXX σσ +<<−

Table 14 shows the variances for the 10, 20, 30, 40, and 100 data point cases above.

Table 14 Comparison of Variances for 10, 20, 30, 40, and 100 Data Points

2
xσ (km2) 2

yσ (km2) 2
zσ (km2) 2

x&σ (km/s)2 2
y&σ (km/s)2 2

z&σ (km/s)2

10 data
Points

245.6172 0.467814 22.62718 1.180 E-6 2.3883 E-5 5.076 E-5

20 data
Points

0.106890 0.022710 0.001767 3.576 E-8 1.0605 E-7 2.972 E-10

30 data
points

0.0018319 0.003897 0.000108 2.144 E-8 8.5994 E-9 8.247 E-11

40 data
points

0.0016032 0.0011008 9.1517 E-5 1.117 E-8 1.8390E-9 1.220 E-11

100 data
points

1.1489 E-5 3.7707 E-7 1.7362 E-6 5.579 E-12 1.003E-12 2.214 E-13

 56

The final example shows a comparison between a typical GPS semi-synchronous orbit

modeled with and without third-body gravitational perturbations in the dynamics. In

general, this example simply illustrates that perturbations increase the uncertainty in state

vector estimate. Table 15 shows the state vector used to generate simulated data, the

state vector used as the initial estimate to start the filter, and the estimated state vectors

with and without the third-body perturbation. Table 16 shows the variances for these two

cases.

Table 15 Comparison of GPS State Vectors with & without Third-Body
 Perturbation

 x (km) y (km) z (km) x& (km/s) y& (km/s) z& (km/s)

Truth
data

-5,522.5788 25,981.690 0.0 -2.173367 0.461963 3.173233

Filter
Start

-5,529.0979 25,980.302 9.519979 -2.173014 0.463621 3.173232

Without
3-body

Perturbation

-5,524.102 25,981.601 -1.00242 -2.173227 0.461914 3.173383

With 3-body
 Perturbation

-5,526.1636 25,981.523 -2.20056 -2.173041 0.461843 3.173551

Table 16 Variances for GPS Orbit with and without Third-Body Perturbation

 2
xσ (km2) 2

yσ (km2) 2
zσ (km2) 2

x&σ (km/s)2 2
y&σ (km/s)2 2

z&σ (km/s)2

Without
 3-body

Perturbation

4.73205 0.028302 1.861128 3.7143 E-8 4.4585 E-9 4.1236 E-8

With 3-body
Perturbation

8.93414 0.121836 2.702021 8.3335 E-8 3.9442 E-9 7.1389 E-8

 57

V. Conclusions and Recommendations

 The objective of this thesis was to investigate the feasibility of a technologically

unsophisticated adversary implementing a “low-tech” satellite tracking system

architecture and orbit determination program to perform a covert microsatellite

rendezvous with a larger uncooperative target. The open-source literature review

investigated the types of tracking sensors and their representative accuracies. These “real

world” accuracy values were then used in a non-linear least squares orbit determination

filter. Since the basis of this thesis was a simulation experiment which involved

programming a non-linear least squares orbit determination filter using simulated data, it

should come as no surprise the filter converges to a solution assuming that the equations

of motion, equations of variation, and other supporting subroutines were properly

developed and coded in the MATLAB® program. The real test of the filter would be to

deploy a real-world sensor, take satellite observations with that sensor, then process the

data through the non-linear least squares filter.

 The most probable orbital location for a hostile, covert, microsatellite rendezvous

mission is low-Earth orbit (LEO) given the difficulty of detecting and tracking the

microsatellite at mid-Earth orbit (MEO) and geosynchronous (GEO) altitudes. The

current assessment, based on open-source information, is that neither China nor any other

foreign country possesses an operational microsatellite anti-satellite weapon. Assuming

that a potential adversary could acquire or develop the technology to design, build, and

launch a microsatellite, and track it with sufficient accuracy, the overall conclusion is that

someday some organization will be able to perform a microsatellite rendezvous with a

non-cooperative target.

 58

 Further work which could be pursued in relation to this thesis would be to develop

a Kalman filter to allow for real-time processing of observation data such as range and

range rate for the orbit determination and updating processes. While the non-linear least

squares orbit determination filter does converge to a solution, it performs best with large

numbers of observations which take more collection time and thus delays processing.

Another approach to the orbit determination problem would be to investigate an

architecture where orbit determination is done solely on the ground and the maneuver

commands are uplinked to the microsatellite in order for it to rendezvous with the target.

This model would relieve the requirement for a precise tracking device on-board the

microsatellite.

 59

Appendix A.

% On_Orbit_Non_Linear_Least_Squares_Filter

% Capt Brian L. Foster

% 22 January 2003

format long g

% Data type 1 = range only; data type 2 = range and range-rate

data_type = 1;

% Open output files

fid1 = fopen('on_orbit_sat_positions_output.txt','w+');

fid2 = fopen('on_orbit_range_and_rate_residuals_output.txt','w+');

fid3 = fopen('on_orbit_state_and_state_corrections_output.txt','w+');

fid4 = fopen('target_reference_trajectory_output.txt','w+');

fid5 = fopen('on_orbit_range_only_output.txt','w+');

fid6 = fopen('on_orbit_covariance_matrix.txt','w+');

% Read in observations from data file

% Range only data

if(data_type == 1)

load('on_orbit_range_only_data.txt','-ascii');

[ob_type,order_ob,JDay,ob_time,range_ob]...

 60

 =textread('on_orbit_range_only_data.txt','%d %d %f %f %f',-1);

end

% Range and range-rate data

if(data_type == 2)

load('on_orbit_range_and_rate_data.txt','-ascii');

[ob_type,order_ob,JDay,ob_time,range_ob,range_rate_ob]...

 =textread('on_orbit_range_and_rate_data.txt','%d %d %f %f %f %f',-1);

end

% Determine the number of observations which will determine the number

% of times through the data processing loop.

num_obs = length(ob_type);

% Initial guess (estimate) of state vector for the target satellite

r_tgt(1) = 1605.648663;

r_tgt(2) = -7030.713446;

r_tgt(3) = 3.0;

v_tgt(1) = -1.101099;

v_tgt(2) = -0.251102;

v_tgt(3) = 7.350048;

% Initial position of the microsatellite

r_micro(1) = 1597.121868;

 61

r_micro(2) = -7028.875456;

r_micro(3) = 36.750077;

v_micro(1) = -1.109613;

v_micro(2) = -0.213701;

v_micro(3) = 7.349950;

% Initialize the state vectors for the target and the microsatellite.

% The state vector is a 6 x 1 column vector.

% X(1) = I component of position vector r in the IJK coordinate system

% X(2) = J component of position vector r in the IJK coordinate system

% X(3) = K component of position vector r in the IJK coordinate system

% X(4) = I component of velocity vector v in the IJK coordinate system

% X(5) = J component of velocity vector v in the IJK coordinate system

% X(6) = K component of velocity vector v in the IJK coordinate system

% Initial guess (estimate) of state vector for the microsat in column vector form

X_micro_ref = [r_micro(1); r_micro(2); r_micro(3); v_micro(1);...

 v_micro(2); v_micro(3)];

X_micro = X_micro_ref;

% Initial guess (estimate) of state vector for the target satellite in column vector form

X_tgt_ref = [r_tgt(1); r_tgt(2); r_tgt(3); v_tgt(1); v_tgt(2); v_tgt(3)];

 62

% Initialize state corrections to 0

del_X_tgt = [0; 0; 0; 0; 0; 0; 0];

iteration = 0;

fprintf(fid3,'%3d %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f

%15.6f %15.6f %15.6f\n', iteration, X_tgt_ref(1), X_tgt_ref(2), X_tgt_ref(3),

X_tgt_ref(4), X_tgt_ref(5), X_tgt_ref(6), del_X_tgt(1), del_X_tgt(2), del_X_tgt(3),

del_X_tgt(4), del_X_tgt(5), del_X_tgt(6));

%%%

% Flags to turn on (xxxx_flag = 1) or off (xxxx_flag = 0) perturbations.

% J2 is the second zonal gravity harmonic

% drag can be calculated for altitudes up to 1,000 km with density

% calculated in function 'atmosphere.'

% third-body includes gravtitational effects of the Sun and Moon

%%%

J2_flag = 0;

drag_flag = 0;

third_body_flag = 0;

%%%

% Satellite parameters needed for estimating atmospheric drag.

 63

%%%

tgt_drag_coefficient = 1.0; % Dimensionless

tgt_sat_mass = 1000.0; % Kilograms

tgt_sat_area = 1.0; % Square meters

micro_drag_coefficient = 1.0; % Dimensionless

micro_sat_mass = 100.0; % Kilograms

micro_sat_area = 0.1698; % Square meters

%%%

% Set up z, the total data (observation) vector.

% The "order" of z is the number of "types" of data

% associated with a single observation time. For example,

% if processing range and range-rate then the order is 2.

% The dimension of z is (number of obs) x (order).

%%%

% Set maximum number of iterations for the filter to loop through.

max_iter = 20;

iteration = 1;

%%%

% Begin iteration loop for Non-Linear Least Squares

while iteration <= max_iter

 % "Mode" value is the flag for deciding whether only the equations

 64

 % of motion (EOM)(mode = 0) or EOM and equations of

 % variation (EOM + EOV)(mode = 1) are processed in subroutine "rhs"

 % which provides the differential equations to be integrated.

 mode = 1;

 %%

 % Initialize the "total" state vector.

 %%

 % "n" is the number of equations to be integrated.

 % 42 is the total number of equations. 6 for the state components

 % plus 36 for the components of the state transition matrix, phi.

 n = 42;

 % Initialize the state transition matrix for the target,

 % phi_target, to the identity matrix.

 phi_tgt = eye(6);

 % If mode not equal to 1, the totatl state vector is only the

 % target satellite's position and velocity.

 if(mode ~= 1)

 X_tgt = [X_tgt_ref(1); X_tgt_ref(2); X_tgt_ref(3); X_tgt_ref(4);...

 X_tgt_ref(5); X_tgt_ref(6)];

 end

 65

 % If mode is equal to 1, the total state vector is the target

 % satellite's position and velocity and its state transition

 % matrix. Formed as 42 by 1 column vector since ode45 expects

 % a column vector.

 if(mode == 1)

 X_tgt = [X_tgt_ref(1); X_tgt_ref(2); X_tgt_ref(3); X_tgt_ref(4);...

 X_tgt_ref(5); X_tgt_ref(6); phi_tgt(1,1); phi_tgt(1,2);...

 phi_tgt(1,3); phi_tgt(1,4); phi_tgt(1,5); phi_tgt(1,6);...

 phi_tgt(2,1); phi_tgt(2,2); phi_tgt(2,3); phi_tgt(2,4);...

 phi_tgt(2,5); phi_tgt(2,6); phi_tgt(3,1); phi_tgt(3,2);...

 phi_tgt(3,3); phi_tgt(3,4); phi_tgt(3,5); phi_tgt(3,6);...

 phi_tgt(4,1); phi_tgt(4,2); phi_tgt(4,3); phi_tgt(4,4);...

 phi_tgt(4,5); phi_tgt(4,6); phi_tgt(5,1); phi_tgt(5,2);...

 phi_tgt(5,3); phi_tgt(5,4); phi_tgt(5,5); phi_tgt(5,6);...

 phi_tgt(6,1); phi_tgt(6,2); phi_tgt(6,3); phi_tgt(6,4);...

 phi_tgt(6,5); phi_tgt(6,6)];

 end

 % Verify X is a 42 x 1 column vector.

 X_tgt_size = size(X_tgt);

 % Re-initialize the microsatellite's state vector to the beginning

 % for each iteration or else the range will diverge with each

 66

 % successive iteration.

 X_micro = X_micro_ref;

%%%

 % Initialize buffers for matrix product accumulation.

 % The matrices used in this program are:

 % phi - state transition matrix (6 x 6)

 % H - observation model (order_obs x 6)

 % T - observation matrix; product of H * phi; (order_obs x 6)

 % Q - instrument covariance matrix (order_obs x order_obs)

 % r - residual vector

 % P - state covariance matrix (6 x 6)

%%%

 % For product of (T transpose) * (Q inverse) * (r)

 % Dimensions: (6 x n) * (n x n) * (n x 1) = (6 x 1)

 T_tran_Q_inv_r = zeros(6,1);

 % Initialize state covariance matrix inverse (6 x 6)

 P_inv = zeros(6);

 67

 %%

 % Observation (measurement data) processing loop

 %%

 for iob = 1:num_obs

 % Write iteration and observation numbers

 % to screen for progress monitoring.

 fprintf('Iteration %d of %d\n',iteration,max_iter)

 fprintf('%d of %d observations is processing.\n', iob, num_obs)

 fprintf('\n') % Write blank line to screen for spacing.

%%%

 % Numerically integrate state and state transition matrix

 % derivatives to observation time.

%%%

 % Time "vector" to pass to integration routine ode45.

 if(iob == 1)

 time_vec = 0:ob_time(1);

 end

 if(iob > 1)

 time_step = ob_time(iob) - ob_time(iob-1);

 time_vec = 0:time_step;

 68

 end

 % Also establish the Julian Date to pass on to function 'rhs' for

 % third-body perturbations calculation.

 JD = JDay(iob);

 % Set absolute error tolerance for ode45 function for the target

 % satellite. Must match the target's state column vector size.

 % IMPORTANT: Dr. Tragesser recommends the error tolerance be

 % very tight, 1 x e-8 or smaller such as 1 x e-10.

 abs_tol = 1e-8 * ones(42,1);

 % Set options for ode45, including relative error tolerance.

 options = odeset('RelTol', 1e-8, 'AbsTol', abs_tol);

 % ode45 is one of MATLAB's built-in numerical integrators. It is

 % based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince

 % pair. It is a one-step solver in computing X(t), it needs only

 % the solution at the immediately preceding time point, X(t n-1).

 % Format of the integration routine call:

 % @rhs is the function containing the equations to be integrated.

 % time_vec is the time span to be integrated over.

 69

 % X is the current state of the system (initial conditions).

 % options contain the information for absolute/relative

 % tolerances, etc.

 % This mode statement MUST be here in order to alternate between

 % the target satellite and the microsatellite.

 mode = 1;

 % NOTE: at this point mode =1 because the state transition matrix

 % for the target must be integrated since it is the target's

 % state we are trying to estimate with the filter and not the microsatellite.

 [t,Y_tgt] = ode45(@on_orbit_rhs, time_vec, X_tgt,

options,mode,JD,third_body_flag, J2_flag, drag_flag, tgt_drag_coefficient,

tgt_sat_mass,tgt_sat_area);

 % The state of X_micro does not need to go through the equations of

 % variation since we are not estimating the microsatellites orbit.

 % Thus, mode = 0 and the state is a 6 x 1 column vector.

 mode = 0;

 abs_tol = 1e-8 * ones(6,1);

 options = odeset('RelTol', 1e-8, 'AbsTol', abs_tol);

% Propagate the microsatellite's state vector.

 70

[t,Y_micro] = ode45(@on_orbit_rhs, time_vec, X_micro,

options,mode,JD,third_body_flag,...

 J2_flag, drag_flag,micro_drag_coefficient,micro_sat_mass,micro_sat_area);

 % ode45 returns a matrix that is of dimensions

 % (# of times steps x # of equations integrated)

 Y_tgt_ode_size = size(Y_tgt);

 Y_micro_ode_size = size(Y_micro);

 % Determine the length of the state matrices.

 last_row_tgt = Y_tgt_ode_size(1);

 last_row_micro = Y_micro_ode_size(1);

 % Extract only the last time step (row) values of state X

 % because ode45 expects a 42 component column vector

 % instead of large matrix that would be passed next time.

 % last row, the ':' means all columns associated with that row

 X_micro = Y_micro(last_row_micro,:);

 X_tgt = Y_tgt(last_row_tgt,:);

 % Write the target and microsatellite position vectors to output file

 fprintf(fid1,'%15.5f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f\n',...

 ob_time(iob),X_tgt(1),X_tgt(2),X_tgt(3),X_micro(1),X_micro(2),X_micro(3));

 71

%%%

 % Read observation data for this particular observation time.

 % These are the 'real' measured data.

%%%

 if(data_type == 1)

 z_obs = [range_ob(iob)];

 end

 if(data_type == 2)

 z_obs = [range_ob(iob); range_rate_ob(iob)];

 end

 % Form the satellites' position vectors.

 r_tgt = [X_tgt(1); X_tgt(2); X_tgt(3)];

 r_micro = [X_micro(1); X_micro(2); X_micro(3)];

 % Form the satellites' velocity vectors.

 v_tgt = [X_tgt(4); X_tgt(5); X_tgt(6)];

 v_micro = [X_micro(4); X_micro(5); X_micro(6)];

 72

 % Call to function 'obser' to get the predicted data vector,

 % which is based on the current states (position and velocity vectors).

 % zpred, H matrix, Q_inv matrix.

 [zpred,H,Q_inv] = obser(r_tgt,v_tgt,r_micro,v_micro,data_type);

 zpred_size = size(zpred);

 %%

 % Begin the matrix calculations for this observation

%%

 % Initialize the residual rejection flag.

 rejected = 0;

 % Calculate the residuals vector. Residuals are the

 % difference of where we think the target satellite is

 % and where the observations say it is.

 if(data_type == 1)

 r = [z_obs(1,1) - zpred(1,1)];

 % Write residuals to screen

 fprintf('Range residual: %f kilometers.\n',r(1,1))

 fprintf('\n') % Blank line for spacing.

 73

 end

 if(data_type == 2)

 r = [z_obs(1,1) - zpred(1,1); z_obs(2,1) - zpred(2,1)];

 % Write residuals to screen

 fprintf('Range residual: %f kilometers.\n',r(1,1))

 fprintf('Range-rate residual: %f kilometers/second\n',r(2,1))

 fprintf('\n') % Blank line for spacing.

 end

 residual_vector_size = size(r);

 ndata = length(r);

 reject = 30000.0;

 for i = 1:ndata

 % Compare the elements of r(i) with its corresponding

 % diagonal entry of the Q_inv matrix.

 if(abs(r(i,1)) > reject/sqrt(Q_inv(i,i)))

 % Set residual rejection flag to sort/omit rejected obs.

 rejected = 1;

 end

 74

 end % End for i = 1:ndata

 % If the observation is not rejected, process its matrices.

 % Check if 'rejected' is anything other than 1 (not equal to 1).

 if (rejected ~= 1)

 % Extract the target satellite's phi matrix in normal form

 % from the 'total' state column vector X_tgt.

 phi = [X_tgt(7) X_tgt(8) X_tgt(9) X_tgt(10) X_tgt(11) X_tgt(12);

 X_tgt(13) X_tgt(14) X_tgt(15) X_tgt(16) X_tgt(17) X_tgt(18);

 X_tgt(19) X_tgt(20) X_tgt(21) X_tgt(22) X_tgt(23) X_tgt(24);

 X_tgt(25) X_tgt(26) X_tgt(27) X_tgt(28) X_tgt(29) X_tgt(30);

 X_tgt(31) X_tgt(32) X_tgt(33) X_tgt(34) X_tgt(35) X_tgt(36);

 X_tgt(37) X_tgt(38) X_tgt(39) X_tgt(40) X_tgt(41) X_tgt(42)];

 % Matrix dimension statements for debugging.

 % Remove ; at end of line to write to screen.

 H_size = size(H);

 phi_size = size(phi);

 % Form matrix product T = H * phi

 % Dimensions: (n x 6) = (n x 6)*(6 x 6), where

 75

 % n = ndata = order_ob

 % T is the observation matrix.

 T = H * phi;

 T_size = size(T);

 % Form product P_inv = (T transpose)*(Q inverse)*(T)

 % This product is the "observability condition." It

 % must be invertible for an estimate to exist.

 % Dimensions: (6 x 6)= (6 x n)*(n x n) *(n x 6)

 P_inv = P_inv + (T' * Q_inv * T);

 % State estimate covariance, P

 P = inv(P_inv);

 position_variance = sqrt(P(1,1) + P(2,2) + P(3,3));

 % Write observed and predicted range and range rate and

 % residuals to output file.

 if(data_type == 1)

 fprintf(fid5,'%15.5f %14.8f %14.8f %14.8f %14.8f\n',...

 ob_time(iob),z_obs(1,1),zpred(1,1),r(1,1),position_variance);

 end

 76

 % Write observed and predicted range and range rate and

 % residuals to output file.

 if(data_type == 2)

 fprintf(fid2,'%15.5f %14.8f %14.8f %14.8f %10.6f %10.6f %10.6f %14.8f\n',...

 ob_time(iob),z_obs(1,1),zpred(1,1),r(1,1),z_obs(2,1),...

 zpred(2,1),r(2,1),position_variance);

 end

 % Matrix dimension statements for debugging.

 Q_inv_size = size(Q_inv);

 T_size = size(T);

 T_trans_size = size(T');

 r_size = size(r);

 % Form product (T transpose)*(Q inverse)*(r)

 % Dimensions: (6 x 1) = (6 x 1) + (6 x n)*(n x n)*(n x 1)

 T_tran_Q_inv_r = T_tran_Q_inv_r + (T' * Q_inv * r);

 end % End to go with check of rejected ~= 1.

 77

 % Reset rejected flag to 0 so that the next observation will be evaluated.

 rejected = 0;

 end % End of loop for iob = 1:num_obs

 % Invert matrix H transpose Q inverse H to find covariance P

 % Dimensions: (6 x 6) = inv((6 x n)*(n x n)*(n x 6))

 %P = inv(H' * Q_inv * H);

 P = inv(P_inv);

 % Multiply P by T transpose Q inverse r to get correction

 % to the state vector.

 % Initialize state correction term, dx, to zero first

 del_X_tgt = zeros(6,1);

 % Dimensions: (6 x 1) = (6 x 6)*(6 x 1)

 del_X_tgt = del_X_tgt + P * T_tran_Q_inv_r;

 if((abs(del_X_tgt(1) > 0.05*abs(P(1,1))))...

 | (abs(del_X_tgt(2) > 0.05*sqrt(abs(P(2,2)))))...

 | (abs(del_X_tgt(3) > 0.05*sqrt(abs(P(3,3)))))...

 | (abs(del_X_tgt(4) > 0.05*sqrt(abs(P(4,4)))))...

 | (abs(del_X_tgt(5) > 0.05*sqrt(abs(P(5,5)))))...

 | (abs(del_X_tgt(6) > 0.05*sqrt(abs(P(6,6))))))

 78

 % The vertical bar(s) in the above 'if' statement is/are

 % MATLAB's logical 'or' operator.

 convergence = 0

 else

 convergence = 1

 end

 % Add in state corrections to reference state (trajectory)

 % This for the state at EPOCH only. NOT every time step.

 X_tgt_ref = X_tgt_ref + del_X_tgt

 % Write this iterations state correction dx to output file here.

 fprintf(fid3,'%3d %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f

%15.6f %15.6f %15.6f %15.6f\n',...

iteration,X_tgt_ref(1),X_tgt_ref(2),X_tgt_ref(3),X_tgt_ref(4),X_tgt_ref(5),X_tgt_ref(6),

 del_X_tgt(1),del_X_tgt(2),del_X_tgt(3),del_X_tgt(4),del_X_tgt(5),del_X_tgt(6));

 if(convergence == 1)

 % Just add a number to get iterations to exceed

 % maximum iteration and exit the while loop;

 fprintf('Converged on iteration %d of %d\n',iteration,max_iter)

 79

 iteration = max_iter + 5;

 end

 % Increment iteration value

 iteration = iteration + 1

 end % End statement for the iterations to max_iter loop

% Write values to screen

X_tgt_ref

del_X_tgt

P

% Write the final covariance matrix components to output file here.

for i = 1:6

fprintf(fid6,'%25.20f %25.20f %25.20f %25.20f %25.20f %25.20f\n',...

 P(i,1),P(i,2),P(i,3),P(i,4),P(i,5),P(i,6));

end

% Principal error axes

% Extract the 3 x 3 space and velocity covariance submatrices

% Space covariance is the upper lefthand 3 x 3 of the P matrix

% Velocity covariance is the lower righthand 3 x 3 of the P matrix

 80

for i = 1:3

 for j = 1:3

 space_P(i,j) = P(i,j);

 velocity_P(i,j) = P(i+3,j+3);

 end

end

% Eigenvector/value analysis of the covariance matrices

[V,D] = eig(space_P)

[W,E] = eig(velocity_P)

for i = 1:3

 raxis(i) = D(i,i);

 vaxis(i) = E(i,i);

end

for i = 1:3

 if(raxis(i) < 0.0)

 negative_r_axis = 'Space covariance has a negative value!'

 else

 raxis(i) = sqrt(raxis(i));

 end

end

 81

for i = 1:3

 if(vaxis(i) < 0.0)

 negative_v_axis = 'Velocity covariance has negative value!'

 else

 vaxis(i) = sqrt(vaxis(i));

 end

end

% Write position and velocity principal error axes to the screen.

raxis

vaxis

% Close output files.

fclose(fid1);

fclose(fid2);

fclose(fid3);

fclose(fid4);

fclose(fid5);

fclose(fid6);

does_it_work = 'YES, FINALLY!';

 82

% Call plot function

[plotted] = plot_residuals(data_type)

% End of on-orbit non-linear least squares filter.

 83

Appendix B.

function dX = on_orbit_rhs(t,X,mode,JD,third_body_flag,J2_flag,...

 drag_flag,drag_coefficient,sat_mass,sat_area)

% Capt Brian L. Foster

% 27 January 2003

% This MATLAB code modeled after FORTRAN code written by

% Dr. William E. Wiesel for MECH 731 Modern Methods of

% Orbit Determination.

% This function calculates the equations of motion (EOM) and/or

% not and the equations of variation (EOV) for the problem of

% a spacecraft in orbit around the Earth.

% X is the 42-component 'total' state vector

% X(1-3) are the x,y,z components of the position vector

% X(4-6) are the x,y,z components of the velocity vector

% X(7-42) are the (6 x 6) state transition matrix

% stored row by row

% dX is the 42-component state vector derivatives

 84

% dX(1-3) are the x,y,z derivatives of position (velocity)

% dX(4-6) are the x,y,z derivatives of velocity (acceleration)

% dX(7-42) are the derivatives of the state transition matrix, phi dot

% Open output files for the various acceleration components

% The 'w+' instructs MATLAB that the file can be both read and written

% to and that any previous data in the file is overwritten.

fid1 = fopen('gravity_accleration_output.txt','w+');

fid2 = fopen('J2_acceleration_output.txt','w+');

fid3 = fopen('drag_acceleration_output.txt','w+');

fid4 = fopen('totatl_acceleration_output.txt','w+');

% Earth radius, RE, in kilometers

RE = 6378.1363;

% Earth gravitational parameter, mu, in km^3/sec^2

mu_earth = 398600.4415;

% The N-Body Problem with the origin at the center of the Earth.

% Reference Vallado pages 116-119 or Bate, Mueller, and White page 10.

% Position derivatives = velocity

dX(1) = X(4);

 85

dX(2) = X(5);

dX(3) = X(6);

% Velocity derivatives = gravity acceleration due to the Earth

r_vector = [X(1); X(2); X(3)];

r = norm(r_vector);

f_earth(4) = - mu_earth*X(1)/r^3;

f_earth(5) = - mu_earth*X(2)/r^3;

f_earth(6) = - mu_earth*X(3)/r^3;

%%

% Calculate 3rd body perturbation accelerations, if desired.

%%

if(third_body_flag == 1)

 % Sun's gravitational parameter, km^3/s^2

 mu_sun = 1.32712428e11;

 % Call function 'Sun' for Sun's GEOCENTRIC position vector in km

 [r_sun] = Sun(JD);

 86

 % Vector from Sun to satellite

 dx_sun = X(1) - r_sun(1);

 dy_sun = X(2) - r_sun(2);

 dz_sun = X(3) - r_sun(3);

 % Distance from the Sun to the satellite cubed

 r32_sun = (dx_sun^2 + dy_sun^2 + dz_sun^2)^(3/2);

 % Distance from center of Earth (central body) to Sun cubed.

 rp132_sun = (r_sun(1)^2 + r_sun(2)^2 + r_sun(3)^2)^(3/2);

 % Acceleration terms due to Sun; 3rd body form of the equations

 f_sun(4) = -mu_sun*(dx_sun/r32_sun - r_sun(1)/rp132_sun);

 f_sun(5) = -mu_sun*(dy_sun/r32_sun - r_sun(2)/rp132_sun);

 f_sun(6) = -mu_sun*(dz_sun/r32_sun - r_sun(3)/rp132_sun);

 % Moon's gravitational parameter, km^3/s^2

 mu_moon = 4902.799;

 % Call function 'Moon' for Moon's GEOCENTRIC position vector in km

 [r_moon] = Moon(JD);

 % Vector from Moon to the satellite

 87

 dx_moon = X(1) - r_moon(1);

 dy_moon = X(2) - r_moon(2);

 dz_moon = X(3) - r_moon(3);

 % Distance from the Moon to the satellite cubed

 r32_moon = (dx_moon^2 + dy_moon^2 + dz_moon^2)^(3/2);

 % Distance from center of Earth (central body) to the Moon cubed

 rp132_moon = (r_moon(1)^2 + r_moon(2)^2 + r_moon(3)^2)^(3/2);

 % Acceleration terms due to the Sun; 3rd body form of equations

 f_moon(4) = -mu_moon*(dx_moon/r32_moon - r_moon(1)/rp132_moon);

 f_moon(5) = -mu_moon*(dy_moon/r32_moon - r_moon(2)/rp132_moon);

 f_moon(6) = -mu_moon*(dz_moon/r32_moon - r_moon(3)/rp132_moon);

else

 f_sun(4) = 0.0;

 f_sun(5) = 0.0;

 f_sun(6) = 0.0;

 f_moon(4) = 0.0;

 f_moon(5) = 0.0;

 f_moon(6) = 0.0;

 88

end % 'end' statement to go with third body flag check

%%%

% Calculate the perturbation of the Earth's oblateness due to J2.

%%%

if(J2_flag == 1)

 % J2 gravitational zonal coefficient from JGM-2 from Appendix D

 % of Vallado (1997).

 J2 = -0.1082626925638815e-2;

 % Second harmonic J2 terms, km/s^2

 f_J2(4) = -3*J2*mu_earth*(RE^2)*X(1)/(2*r^5)*(1-((5*X(3)^2)/r^2));

 f_J2(5) = -3*J2*mu_earth*(RE^2)*X(2)/(2*r^5)*(1-((5*X(3)^2)/r^2));

 f_J2(6) = -3*J2*mu_earth*(RE^2)*X(3)/(2*r^5)*(3-((5*X(3)^2)/r^2));

else

 f_J2(4) = 0.0;

 f_J2(5) = 0.0;

 f_J2(6) = 0.0;

end

 89

%%%

% Calculate the perturbation effect of atmospheric drag.

%%%

if(drag_flag == 1)

 % Earth rotational rate in rad/s.

 earth_rotation_rate = 0.000072921158553;

 % Calculate the satellite's velocity vector relative to the

 % Earth's rotating atmosphere.

 % Relative velocity, km/s.

 v_rel(1) = X(4) + earth_rotation_rate * X(2);

 v_rel(2) = X(5) - earth_rotation_rate * X(1);

 v_rel(3) = X(6);

 % Magnitude of relative velocity, km/s.

 v_rel_mag = norm(v_rel);

 % Determine altitude above Earth's surface, km.

 altitude = r - RE;

 90

 % Call function 'atmosphere' to get atmospheric density.

 [density,scale_height] = atmosphere(altitude);

 % Drag acceleration terms.

 f_drag(4) = -0.5 * (drag_coefficient * sat_area / sat_mass)...

 * density * v_rel_mag * v_rel(1) * 1000.0;

 f_drag(5) = -0.5 * (drag_coefficient * sat_area / sat_mass)...

 * density * v_rel_mag * v_rel(2) * 1000.0;

 f_drag(6) = -0.5 * (drag_coefficient * sat_area / sat_mass)...

 * density * v_rel_mag * v_rel(3) * 1000.0;

else

 f_drag(4) = 0.0;

 f_drag(5) = 0.0;

 f_drag(6) = 0.0;

end % 'end' statement to go with drag_flag check.

% Total acceleration for the equations of motion.

dX(4) = f_earth(4) + f_J2(4) + f_drag(4) + f_sun(4) + f_moon(4);

 91

dX(5) = f_earth(5) + f_J2(5) + f_drag(5) + f_sun(5) + f_moon(5);

dX(6) = f_earth(6) + f_J2(6) + f_drag(6) + f_sun(6) + f_moon(6);

if(mode ~= 1)

 dX = [dX(1); dX(2); dX(3); dX(4); dX(5); dX(6)];

end

%%%

% EQUATIONS OF VARIATION

%%%

% If mode = 1, then the equations of variation are processed.

if(mode == 1)

 % Calculate the A matrix (A = gradient of vector f).

 % Initialize to 0 first.

 A = zeros(6,6);

 % A is a 6 x 6 matrix.

 % The upper right 3 x 3 corner is an identity matrix.

 A(1,4) = 1.0;

 A(2,5) = 1.0;

 A(3,6) = 1.0;

 % Diagonal terms of the A matrix lower left corner 3 x 3

 92

 A(4,1) = -mu_earth/r^3 + 3*mu_earth*X(1)^2/r^5;

 A(5,2) = -mu_earth/r^3 + 3*mu_earth*X(2)^2/r^5;

 A(6,3) = -mu_earth/r^3 + 3*mu_earth*X(3)^2/r^5;

 % Off-diagonal terms of the A matrix lower left corner 3 x 3

 % Use symmetry to avoid as much calculation as possible.

 A(4,2) = 3*mu_earth*X(1)*X(2)/r^5;

 A(5,1) = A(4,2);

 A(4,3) = 3*mu_earth*X(1)*X(3)/r^5;

 A(6,1) = A(4,3);

 A(5,3) = 3*mu_earth*X(2)*X(3)/r^5;

 A(6,2) = A(5,3);

 % Equations of variation due to third body effects

 if(third_body_flag == 1)

 % Sun's gravitational parameter, km^3/s^2

 mu_sun = 1.32712428e11;

 % Call function 'Sun' for Sun's GEOCENTRIC position vector in km

 [r_sun] = Sun(JD);

 93

 % Vector from Sun to satellite

 dx_sun = X(1) - r_sun(1);

 dy_sun = X(2) - r_sun(2);

 dz_sun = X(3) - r_sun(3);

 % Distance from the Sun to the satellite cubed

 r32_sun = (dx_sun^2 + dy_sun^2 + dz_sun^2)^(3/2);

 % Distance from the Sun to the satellite to fifth power

 r52_sun = r32_sun^(5/3);

 % Diagonal terms for the Sun

 A_sun(4,1) = -mu_sun*(1/r32_sun - 3 * dx_sun^2/r52_sun);

 A_sun(5,2) = -mu_sun*(1/r32_sun - 3 * dy_sun^2/r52_sun);

 A_sun(6,3) = -mu_sun*(1/r32_sun - 3 * dz_sun^2/r52_sun);

 % Sun's x and y terms

 A_sun(4,2) = 3*mu_sun*dx_sun*dy_sun/r52_sun;

 A_sun(5,1) = A_sun(4,2);

 % Sun's x and z terms

 A_sun(4,3) = 3*mu_sun*dx_sun*dz_sun/r52_sun;

 A_sun(6,1) = A_sun(4,3);

 94

 % Sun's y and z terms

 A_sun(5,3) = 3*mu_sun*dy_sun*dz_sun/r52_sun;

 A_sun(6,2) = A_sun(5,3);

 % Moon's gravitational parameter, km^3/s^2

 mu_moon = 4902.799;

 % Call function 'Moon' for Moon's GEOCENTRIC

 % position vector in km

 [r_moon] = Moon(JD);

 % Vector from Moon to the satellite

 dx_moon = X(1) - r_moon(1);

 dy_moon = X(2) - r_moon(2);

 dz_moon = X(3) - r_moon(3);

 % Distance from the Moon to the satellite cubed

 r32_moon = (dx_moon^2 + dy_moon^2 + dz_moon^2)^(3/2);

 % Distance from the Moon to the satellite to fifth power

 r52_moon = r32_moon^(5/3);

 95

 % Diagonal terms for the Moon

 A_moon(4,1) = -mu_moon*(1/r32_moon - 3 * dx_moon^2/r52_moon);

 A_moon(5,2) = -mu_moon*(1/r32_moon - 3 * dy_moon^2/r52_moon);

 A_moon(6,3) = -mu_moon*(1/r32_moon - 3 * dz_moon^2/r52_moon);

 % Sun's x and y terms

 A_moon(4,2) = 3*mu_moon*dx_moon*dy_moon/r52_moon;

 A_moon(5,1) = A_moon(4,2);

 % Sun's x and z terms

 A_moon(4,3) = 3*mu_moon*dx_moon*dz_moon/r52_moon;

 A_moon(6,1) = A_moon(4,3);

 % Sun's y and z terms

 A_moon(5,3) = 3*mu_moon*dy_moon*dz_moon/r52_moon;

 A_moon(6,2) = A_moon(5,3);

 %third_body_EOV_status = 'Still going!'

 else

 A_sun(4,1) = 0.0;

 A_sun(5,2) = 0.0;

 A_sun(6,3) = 0.0;

 96

 A_sun(4,2) = 0.0;

 A_sun(5,1) = 0.0;

 A_sun(4,3) = 0.0;

 A_sun(6,1) = 0.0;

 A_sun(5,3) = 0.0;

 A_sun(6,2) = 0.0;

 A_moon(4,1) = 0.0;

 A_moon(5,2) = 0.0;

 A_moon(6,3) = 0.0;

 A_moon(4,2) = 0.0;

 A_moon(5,1) = 0.0;

 A_moon(4,3) = 0.0;

 A_moon(6,1) = 0.0;

 A_moon(5,3) = 0.0;

 A_moon(6,2) = 0.0;

 end

 % Equations of variations due to J2

 if(J2_flag == 1)

 % J2 gravitational zonal coefficient from JGM-2 from Appendix D

 97

 % of Vallado (1997).

 J2 = -0.1082626925638815e-2;

 A_J2(4,1) = -3/2*J2*mu_earth*RE^2*((1-5*X(3)^2)/r^2)*...

 (1/r^5 - 5*(X(1)^2/r^7) + 10 * (X(1)^2)*(X(3)^2)/r^9)

 A_J2(4,2) = -3/2*J2*mu_earth*RE^2*X(1)*((-5*X(2)/r^7)*...

 (1-5*(X(3)^2)/r^2) + (10*X(2)*X(3)^2)/r^9);

 A_J2(4,3) = -3/2*J2*mu_earth*RE^2*X(1)*((-5*X(3)/r^7)*...

 (1-5*(X(3)^2)/r^2) + (10*X(3)/r^7)*((X(3)^2)/r^2 -1));

 A_J2(5,1) = -3/2*J2*mu_earth*RE^2*((-5*X(1)*X(2)/r^7)*...

 (1-5*(X(3)^2)/r^2) + (10*X(1)*X(2)*X(3)^2)/r^9);

 A_J2(5,2) = - 3/2*J2*mu_earth*RE^2*((1-5*(X(3)^2)/r^2)*...

 (1/r^5 - 5*(X(2)^2)/r^7) + 10*(X(2)^2)*(X(3)^2)/r^9);

 A_J2(5,3) = -3/2*J2*mu_earth*RE^2*X(2)*((-5*X(3)/r^7)*...

 (1-5*(X(3)^2)/r^2) + (10*X(3)/r^7)*((X(3)^2)/r^2 -1));

 A_J2(6,1) = -3/2*J2*mu_earth*RE^2*X(3)*((-5*X(1)/r^7)*...

 (3-5*(X(3)^2)/r^2) + (10*X(1)*X(3)^2)/r^9);

 98

 A_J2(6,2) = - 3/2*J2*mu_earth*RE^2*X(3)*((-5*X(2)/r^7)*...

 (3-5*(X(3)^2)/r^2) + (10*X(2)*X(3)^2)/r^9);

 A_J2(6,3) = -3/2*J2*mu_earth*RE^2*(((3-5*X(3)^2)/r^2)*...

 (1/r^5 - 5*(X(3)^2)/r^7) + (10*(X(3)^2)/r^7)*((X(3)^2)/r^2)-1);

 else

 A_J2(4,1) = 0.0;

 A_J2(4,2) = 0.0;

 A_J2(4,3) = 0.0;

 A_J2(5,1) = 0.0;

 A_J2(5,2) = 0.0;

 A_J2(5,3) = 0.0;

 A_J2(6,1) = 0.0;

 A_J2(6,2) = 0.0;

 A_J2(6,3) = 0.0;

 end

 % Equations of variation due to atmospheric drag.

 if(drag_flag == 1)

 99

 % Earth rotation rate, rad/s.

 earth_rotation_rate = 0.000072921158553;

 % Calculate the satellite's velocity vector relative to

 % the Earth's rotating atmosphere.

 % Relative velocity, km/s.

 v_rel(1) = X(4) + earth_rotation_rate * X(2);

 v_rel(2) = X(5) - earth_rotation_rate * X(1);

 v_rel(3) = X(6);

 % Magnitude of relative velocity, km/s.

 v_rel_mag - norm(v_rel);

 % Determine altitude above Earth's surface, km.

 altitude = r - RE;

 % Call function 'atmosphere' to get atmospheric density and

 % scale height.

 [density, scale_height] = atmosphere(altitude);

 big_H = scale_height;

 % Drag constant, DC, for easy programming

 100

 DC = -0.5 * drag_coefficient * sat_area / sat_mass;

 A_drag(4,1) = DC*density *v_rel(1)*(-X(1)*v_rel_mag/(big_H * r) -...

 earth_rotation_rate*v_rel(2)/v_rel_mag)*1000.0;

 A_drag(4,2) = DC*density*(-X(2)*v_rel_mag*v_rel(1)/(big_H * r) +...

 earth_rotation_rate/v_rel_mag*v_rel(1)^2 + ...

 v_rel_mag * earth_rotation_rate)*1000.0;

 A_drag(4,3) = DC*density*(-X(3)*v_rel_mag*v_rel(1)/(big_H * r))*1000.0;

 A_drag(4,4) = DC*density*((v_rel(1)^2)/v_rel_mag + v_rel_mag)*1000.0;

 A_drag(4,5) = DC*density*((v_rel(1)*v_rel(2))/v_rel_mag)*1000.0;

 A_drag(4,6) = DC*density*(v_rel(1)*v_rel(3)/v_rel_mag)*1000.0;

 A_drag(5,1) = DC*density*(-X(1)*v_rel_mag*v_rel(2)/(big_H * r) -...

 earth_rotation_rate*(v_rel(2)^2)/v_rel_mag - ...

 earth_rotation_rate*v_rel_mag)*1000.0;

 A_drag(5,2) = DC*density*(-X(2)*v_rel_mag*v_rel(2)/(big_H * r) +...

 earth_rotation_rate*v_rel(1)*v_rel(2)/v_rel_mag)*1000.0;

 A_drag(5,3) = DC*density*(-v_rel_mag*v_rel(2)*X(3)/(big_H * r))*...

 1000.0;

 A_drag(5,4) = DC*density*(v_rel(1)*v_rel(2)/v_rel_mag)*1000.0;

 A_drag(5,5) = DC*density*((v_rel(2)^2)/v_rel_mag+v_rel_mag)*1000.0;

 A_drag(5,6) = DC*density*(v_rel(3)*v_rel(2)/v_rel_mag)*1000.0;

 101

 A_drag(6,1) = DC*density*(-X(1)*v_rel_mag*v_rel(3)/(big_H * r) -...

 earth_rotation_rate*v_rel(2)*v_rel(3)/v_rel_mag)*1000.0;

 A_drag(6,2) = DC*density*(-X(2)*v_rel_mag*v_rel(3)/(big_H * r) +...

 earth_rotation_rate*v_rel(1)*v_rel(3)/v_rel_mag)*1000.0;

 A_drag(6,3) = DC*density*(-X(3)*v_rel_mag*v_rel(3)/(big_H * r))...

 *1000.0;

 A_drag(6,4) = DC*density*(v_rel(1)*v_rel(3)/v_rel_mag)*1000.0;

 A_drag(6,5) = DC*density*(v_rel(2)*v_rel(3)/v_rel_mag)*1000.0;

 A_drag(6,6) = DC*density*(v_rel(3)^2/v_rel_mag+v_rel_mag)*1000.0;

 else

 A_drag(4,1) = 0.0;

 A_drag(4,2) = 0.0;

 A_drag(4,3) = 0.0;

 A_drag(4,4) = 0.0;

 A_drag(4,5) = 0.0;

 A_drag(4,6) = 0.0;

 A_drag(5,1) = 0.0;

 A_drag(5,2) = 0.0;

 A_drag(5,3) = 0.0;

 A_drag(5,4) = 0.0;

 102

 A_drag(5,5) = 0.0;

 A_drag(5,6) = 0.0;

 A_drag(6,1) = 0.0;

 A_drag(6,2) = 0.0;

 A_drag(6,3) = 0.0;

 A_drag(6,4) = 0.0;

 A_drag(6,5) = 0.0;

 A_drag(6,6) = 0.0;

 end

 % Sum the components.

 % Diagonal terms.

 A(4,1) = A(4,1) + A_J2(4,1) + A_drag(4,1) + A_sun(4,1) + A_moon(4,1);

 A(5,2) = A(5,2) + A_J2(5,2) + A_drag(5,2) + A_sun(5,2) + A_moon(5,2);

 A(6,3) = A(6,3) + A_J2(6,3) + A_drag(6,3) + A_sun(6,3) + A_moon(6,3);

 % Off-diagonal terms.

 A(4,2) = A(4,2) + A_J2(4,2) + A_drag(4,2) + A_sun(4,2) + A_moon(4,2);

 A(5,1) = A(5,1) + A_J2(5,1) + A_drag(5,1) + A_sun(5,1) + A_moon(5,1);

 A(4,3) = A(4,3) + A_J2(4,3) + A_drag(4,3) + A_sun(4,3) + A_moon(4,3);

 A(6,1) = A(6,1) + A_J2(6,1) + A_drag(6,1) + A_sun(6,1) + A_moon(6,1);

 103

 A(5,3) = A(5,3) + A_J2(5,3) + A_drag(5,3) + A_sun(5,3) + A_moon(5,3);

 A(6,2) = A(6,2) + A_J2(6,2) + A_drag(6,2) + A_sun(6,2) + A_moon(6,2);

 % Equations of variation that are velocity related.

 A(4,4) = A_drag(4,4);

 A(4,5) = A_drag(4,5);

 A(4,6) = A_drag(4,6);

 A(5,4) = A_drag(4,4);

 A(5,5) = A_drag(4,5);

 A(5,6) = A_drag(4,6);

 A(6,4) = A_drag(4,4);

 A(6,5) = A_drag(4,5);

 A(6,6) = A_drag(4,6);

 % Extract phi matrix in normal form from the total state

 % column vector X.

 phi = [X(7) X(8) X(9) X(10) X(11) X(12);

 X(13) X(14) X(15) X(16) X(17) X(18);

 X(19) X(20) X(21) X(22) X(23) X(24);

 X(25) X(26) X(27) X(28) X(29) X(30);

 X(31) X(32) X(33) X(34) X(35) X(36);

 X(37) X(38) X(39) X(40) X(41) X(42)];

 104

% Calculate the derivative of the state transition matrix, phi dot.

 phi_dot = A * phi;

 % Write the total state derivative as a column vector to return.

 dX = [dX(1); dX(2); dX(3); dX(4); dX(5); dX(6);...

 phi_dot(1,1); phi_dot(1,2); phi_dot(1,3); phi_dot(1,4);...

 phi_dot(1,5); phi_dot(1,6); phi_dot(2,1); phi_dot(2,2);...

 phi_dot(2,3); phi_dot(2,4); phi_dot(2,5); phi_dot(2,6);...

 phi_dot(3,1); phi_dot(3,2); phi_dot(3,3); phi_dot(3,4);...

 phi_dot(3,5); phi_dot(3,6); phi_dot(4,1); phi_dot(4,2);...

 phi_dot(4,3); phi_dot(4,4); phi_dot(4,5); phi_dot(4,6);...

 phi_dot(5,1); phi_dot(5,2); phi_dot(5,3); phi_dot(5,4);...

 phi_dot(5,5); phi_dot(5,6); phi_dot(6,1); phi_dot(6,2);...

 phi_dot(6,3); phi_dot(6,4); phi_dot(6,5); phi_dot(6,6)];

 dX_size = size(dX);

end

% Close output data files.

fclose(fid1);

fclose(fid2);

fclose(fid3);

fclose(fid4);

% End of on-orbit rhs function

 105

Appendix C.

function [zpred,H,Q_inv] = obser(r_tgt,v_tgt,r_micro,v_micro,data_type)

% Capt Brian L. Foster

% 20 December 2002

% This MATLAB code modeled after FORTRAN code written by

% Dr. William E. Wiesel for MECH 731 Modern Methods of

% Orbit Determination.

% This subroutine performs the observation relation processing.

% It calculates the predicted observation, z_pred; H matrix; and

% returns the inverse of the data (instrument or measurements)

% covariance matrix, Q_inv.

format long g

%%%

% Data type: range and range-rate

% Relative position vector (3 x 1) (range) in IJK coordinates

% from the microsatellite (with the tracking sensor) to the

% target satellite.

range_vector = r_tgt - r_micro;

 106

% Magnitude of range vector in IJK coordinates, kilometers

range = norm(range_vector);

% Relative velocity in IJK coordinates, in km/s

relative_velocity = v_tgt - v_micro;

% Magnitude of range rate in IJK, in km/s

range_rate = dot(range_vector,relative_velocity)/range;

%%%

% Range only processing

%%%

if(data_type == 1)

% Form z, predicted data vector. (2 x 1)

% Each component of zpred is a scalar.

zpred = [range];

% Form Q, the instrumental covariance matrix

Q = zeros(1,1);

Q(1,1) = 0.002^2; % Instrumentation sigma squared (2 meters = 0.002 km)

Q_inv = inv(Q);

 107

% Form H, the observation matrix, here.

% H matrix found on pages 75-76 of Wiesel and signs changed on

% row 2 in accordance with text on page 80 to account for the

% azimuth difference.

% H is a 2 x 6 matrix based on SEZ coordinates.

% Initialize H to zeros first then build up needed components.

H = zeros(1,6);

% Equations for range partial derivatives that change wrt position

H(1,1) = range_vector(1)/range;

H(1,2) = range_vector(2)/range;

H(1,3) = range_vector(3)/range;

end

%%

% Range and range-rate processing

%%%

if(data_type == 2)

% Form z, predicted data vector. (2 x 1)

% Each component of zpred is a scalar.

 108

zpred = [range; range_rate];

% Form Q, the instrumental covariance matrix

Q = zeros(2,2);

Q(1,1) = 0.000004;

Q(2,2) = 0.000004;

Q_inv = inv(Q);

% Form H, the observation matrix, here.

% H matrix found on pages 75-76 of Wiesel and signs changed on

% row 2 in accordance with text on page 80 to account for the

% azimuth difference.

% H is a 2 x 6 matrix based on SEZ coordinates.

% Initialize H to zeros first then build up needed components.

H = zeros(2,6);

% Equations for range partial derivatives that change wrt position

H(1,1) = range_vector(1)/range;

H(1,2) = range_vector(2)/range;

H(1,3) = range_vector(3)/range;

 109

% Equations for range-rate partial derivatives that change wrt

% position and velocity.

H(2,1) = relative_velocity(1)/range - range_rate*range_vector(1)/range^2;

H(2,2) = relative_velocity(2)/range - range_rate*range_vector(2)/range^2;

H(2,3) = relative_velocity(3)/range - range_rate*range_vector(3)/range^2;

H(2,4) = range_vector(1)/range;

H(2,5) = range_vector(2)/range;

H(2,6) = range_vector(3)/range;

end

 110

Appendix D.

function [v2,warning] = gibbs(r1,r2,r3)

% Test case vectors

%r1 = [1684.709420; -6982.280710; -601.808660]

%r2 = [1599.998580; -7028.257130; 14.877410]

%r3 = [1502.433630; -7021.711680; 631.719850]

% Capt Brian L. Foster

% 23 December 2002

% This is Algorithm 48 from Vallado (1997) page 414.

% It returns the velocity vector associated with position

% vector r2.

% The input vectors r1, r2, and r3 are in the IJK coordinate system

% and with units of kilometers.

format long g

% Earth's gravitational parameter, km^3/s^2

mu = 398600.4415;

 111

% Normal vectors

Z12_vec = cross(r1,r2);

Z23_vec = cross(r2,r3);

Z31_vec = cross(r3,r1);

% Vectors are coplanar if Z23_vec is perpendicular to r1.

% Magnitudes of the position vectors

r1_mag = norm(r1);

r2_mag = norm(r2);

r3_mag = norm(r3);

% Check to see how coplanar the vectors are.

alpha_cop = 90.0 - acos(dot(Z23_vec,r1)/...

 (norm(Z23_vec)*r1_mag))*180.0/pi

% Determine angular separations to ensure sufficient separation

% Angular separation between r1 and r2, in degrees

alpha12 = acos(dot(r1,r2)/(r1_mag*r2_mag))*180.0/pi

% Angular separation between r2 and r3, in degrees

 112

alpha23 = acos(dot(r2,r3)/(r2_mag*r3_mag))*180.0/pi

if(alpha12 < 1.0 | alpha23 < 1.0)

 warning = 'r1, r2, and r3 are too close. Use Herrick-Gibbs.'

 v2 = 'v2 not calculated.'

 return

end

% Intermediate vectors

N_vec = r1_mag * Z23_vec + r2_mag * Z31_vec + r3_mag * Z12_vec;

D_vec = Z12_vec + Z23_vec + Z31_vec;

S_vec = (r2_mag - r3_mag)*r1 + ...

 (r3_mag - r1_mag)*r2 + (r1_mag - r2_mag)*r3;

B_vec = cross(D_vec,r2);

Lg = sqrt(mu/(norm(N_vec) * norm(D_vec)));

% Velocity vector associated with r2, units in km/s

v2 = Lg/r2_mag * B_vec + Lg * S_vec

warning = 0;

return

 113

Appendix E.

function [v2] = h_gibbs(r1,r2,r3,JD1,JD2,JD3)

% Capt Brian L. Foster

% 23 December 2002

% Test case vectors

r1 = [1607.879850;-7026.697450; -15.031650]

r2 = [1599.998580; -7028.257130; 14.877410]

r3 = [1592.705670; -7030.083050; 44.770310]

% Julian Dates of test case vectors

JD1 = 2452734.4999537

JD2 = 2452734.5

JD3 = 2452734.5000463

% This is Algorithm 49 from Vallado (1997) page 420.

format long g

% Earth's gravitational parameter, km^3/s^2

mu = 398600.4415;

 114

% The position vectors r1, r2, and r3 are in the IJK

% coordinate system with units of kilometers.

% Remember that JD dates are in "DAYS" and must be

% converted to seconds.

del_t31 = (JD3 - JD1)*86400.0;

del_t32 = (JD3 - JD2)*86400.0;

del_t21 = (JD2 - JD1)*86400.0;

% Data for test case debugging.

% del_t31 = 153.04;

% del_t32 = 76.56;

% del_t21 = 76.48;

Z23_vec = cross(r2,r3);

Z23 = norm(Z23_vec);

r1_mag = norm(r1);

r2_mag = norm(r2);

r3_mag = norm(r3);

 115

alpha_cop = 90.0 - acos(dot(Z23_vec,r1)/(Z23*r1_mag))*180.0/pi

% Determine angular separations to ensure sufficient separation

% Angular separation between r1 and r2

alpha12 = acos(dot(r1,r2)/(r1_mag*r2_mag))*180.0/pi

% Angular separation between r2 and r3

alpha23 = acos(dot(r2,r3)/(r2_mag*r3_mag))*180.0/pi

if(alpha12 > 5.0 | alpha23 > 5.0)

 v2 = 'v2 not calculated.';

 warning = 'r1, r2, and r3 are too far apart. Use Gibbs method.';

 return

end

% Velocity vector associated with second position vector in km/s.

v2 = -del_t32*(1/(del_t21*del_t31) + mu/(12*r1_mag^3))*r1 +...

 (del_t32 - del_t21)*(1/(del_t21*del_t32) + mu/(12*r2_mag^3))*r2 +...

 del_t21*(1/(del_t32*del_t31) + mu/(12*r3_mag^3))*r3

warning = 0;

return

 116

Bibliography

1. AN/FPS -85 Spacetrack Radar Physical Dimensions.
http://www.globalsecurity.org/space/systems/an-fps-85.htm.

2. Bate, Roger R., Donald D. Mueller, Jerry E. White. Fundamentals of Astrodynamics.
New York: Dover Publications, Inc., 1971.

3. Cantafio, Leopold J. Space-based Radar Handbook. Norwood, MA: Artech House,
Inc., 1989.

4. “China Completes Ground Tests of Anti-satellite Weapon.” Sing Tao, Hong Kong,
January 5, 2001. Translated by FBIS. Document ID: CPP20010105000026.

5. Cole, Timothy D., Mark Boies, Ashruf El-Dinary. “Laser Radar Instrument for the
Near-Earth Asteroid Rendezvous (NEAR) Mission,” Proceedings of SPIE, Vol. 2748
(1996), pp. 122-139.

6. Cosyn, Philippe. “China Plans Rapid-Response, Mobile Rocket, Nanosatellite Next
Year.” SpaceDaily.com website. http://www.spacedaily.com/news/china-01zc.html.

7. Ground-Based Electro-Optical Deep Space Surveillance (GEODSS) data.
http://www.globalsecurity.org/space/systems/geodss.htm.

8. Hasson, V., F. Corbett, M. Kovacs, M. Groden, D. Hogenboom, G. Dryden, R. Pohle,
C. Phipps, D. Werling, S. Czyzak, J. Gonglewski, and J. Campbell.
“Use of Laser Radar for Small Space Object Experiments,” Proceedings of SPIE, Vol.
4091 (2000), pp. 363-374.

9. International Laser Ranging Service website.
http://ranier.oact.hq.nasa.gov/Sensors_page/Laser/SLR.html

10. Keil, Robin, editor. Missile Systems of the World. Bremerton, WA: AMI
International, 1999.

11. Kovacs, M., G. Dryden, R. Pohle, K. Ayers, R. Carreras, L. Crawford, and R. Taft.
“HI-CLASS on AEOS: A Large Aperture Laser Radar for Space Surveillance/Situational
Awareness Investigations,” Proceedings of SPIE, Vol. 4490 (2001), pp. 298-306.

12. Montenbruck, Oliver and Eberhard Gill. Satellite Orbits-Models, Methods, and
Applications. Heidelberg, Germany: Springer-Verlag, 2000.

13. Nicolas, Joëlle, Francis Pierron, Michel Kasser, Pierre Exertier, Pascal Bonnefond,
François Barlier, and Jennifer Hasse. “French Transportable Laser Ranging Station:

 117

Scientific Objectives, Technical Features, and Performance.” Applied Optics, Vol. 39,
No. 3, 20 January 2000, pp. 402-410.

14. Psiaki, Mark L., “Satellite Orbit Determination Using a Single-Channel Global
Positioning System Receiver,” Journal of Guidance, Control, and Dynamics, Vol. 25,
No. 1, 2002, pp. 137-144.

15. Schwartz, Jon A. “Pulse Spreading and Range Correction Analysis for Satellite
Laser Ranging,” Applied Optics, Vol. 29, No. 25, 1 September 1990, pp. 3597 – 3602.

16. Sietzen, Frank. Jr. “Microspace Technology Comes to China.” SPACE.com website.
October 19, 2000.
http://www.space.com/news/spaceagencies/microsat_china_001019.html.

17. Streetly, Martin, editor. Jane’s Radar and Electronic Warfare Systems 2001-2002,
13th Ed. Alexandria, VA: Jane’s Information Group, Inc., 2001.

18. Sydney, Paul, John Africano, Amy Fredericks, Kris Hamada, Vicki SooHoo, Daron
Nishimoto, Paul Kervin, Steve Bisque, and Matthew Bisque. “Raven Automated Small
Telescope Systems,” Proceedings of SPIE, Vol. 4091 (2000), pp. 237-247.

19. Tansey, R.J., B. Campbell, and A. Koumvakalis. “Description and Experimental
Results of a 58-lb Portable LEO Satellite Tracker,” Proceedings of SPIE, Vol. 3434
(1998), pp. 78-87.

20. Vallado, David A. Fundamentals of Astrodynamics and Applications. New York:
McGraw-Hill, 1997.

21. Wei, Long. “China’s First Microsat Operational.” Report posted on SpaceDaily
website July 11, 2000. http://www.spacedaily.com/news/microsat-00k.html.

22. Wertz, James R. and Wiley J. Larson. Space Mission Analysis and Design, 3rd Ed.
Torrance, CA: Microcosm Press, 1999.

23. Wiesel, William E. Class handout distributed in MECH 731, Modern Methods of
Orbit Determination. Graduate School of Engineering, Air Force Institute of Technology
(AETC), Wright-Patterson AFB OH, June 1998.

24. Wilson, Tom. “Threats to United States Space Capabilities.” Background paper
prepared for the Commission to Assess United States National Security Space
Management and Organization, January 11, 2001.

 118

Vita

 Captain Brian L. Foster graduated from Panola High School in Panola, Oklahoma

in 1986. He was commissioned on 9 May 1992 through AFROTC Detachment 675 at the

University of Oklahoma where he received a Bachelor of Science in Aerospace

Engineering. Upon entering active duty in February 1993, he attended Undergraduate

Missile Training at Vandenberg AFB, California where he graduated as a Top Performer.

After UMT, he was assigned to the 741st Missile Squadron at Minot AFB, North Dakota

as a Deputy Missile Combat Crew Commander. He also served as a Missile Combat

Crew Commander instructor and Flight Commander. In July 1997 he was assigned to the

3rd Space Operations Squadron Schriever AFB, Colorado as an orbital analyst for the

Defense Satellite Communication System III and Ultra-high Frequency Follow-On

programs. While in 3 SOPS, he was a key member of three teams which conducted

launch operations for DSCS III B-8 and UHF F/O Flights 9 and 10. In June 2000, he

became a space operations instructor in Detachment 1, 533rd Training Squadron at

Schriever AFB, Colorado. During his tour of duty in Colorado, he completed a Master of

Engineering in Space Operations from the University of Colorado at Colorado Springs.

In August 2001, he was one of five officers to enroll in the Graduate School of

Engineering and Management, Air Force Institute of Technology, as the first ever class

under Air Force Space Command’s Vigilant Scholar Program. Upon graduation, he will

be assigned to Headquarters Air Force Space Command, Directorate of Requirements,

Navigation and Communication Division, where he will work technical analysis issues

related to navigation warfare and modernization of the Global Positioning System.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

14-03-2003
2. REPORT TYPE

Master’s Thesis

3. DATES COVERED (From – To)
Sep 2002 – Mar 2003

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

ORBIT DETERMINATION FOR A MICROSATELLITE
RENDEZVOUS WITH NON-COOPERATIVE TARGET

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Foster, Brian L., Captain, USAF

 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GAI/ENY/03-2

10. SPONSOR/MONITOR’S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
 This study investigated the minimum requirements to establish a satellite tracking system architecture for a
hostile “parasitic microsatellite” to rendezvous with a larger, non-cooperative target satellite. Four types of
tracking systems and their capabilities were reviewed with emphasis on “low-technology” level and/or mobile
systems which could be used by technologically unsophisticated state or non-state adversaries. With the
tracking system architecture selected, simulated tracking data was processed with a non-linear least squares
orbit determination filter to determine and/or update the target satellite’s state vector.

15. SUBJECT TERMS
 Microsatellite, Orbit Determination, Non-linear Least Squares, Rendezvous

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Dr. Steven G. Tragesser

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

127
19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4286; e-mail: Steven.Tragesser@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

